[1] |
Seh Z W, Sun Y, Zhang Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016,45(20):5605-5634.
URL
pmid: 27460222
|
[2] |
Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016,1(9):16132.
|
[3] |
Chen J H(陈加航), Yang H J(杨慧军), Guo C(郭城), et al. Current status and prospect of battery configuration in Li-S system[J]. Journal of Electrochemistry (电化学), 2019,25(1):3-16.
|
[4] |
Zhang Z, Kong L L, Liu S, et al. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery[J]. Advanced Energy Materials, 2017,7(11):1602543.
|
[5] |
Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014,5:4759.
URL
pmid: 25154399
|
[6] |
Park J, Yu B C, Park J S, et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery[J]. Advanced Energy Materials, 2017,7(11):1602567.
|
[7] |
Wang W K(王维坤), Wang A B(王安邦), Jin C Q(金朝庆). Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology (储能科学与技术), 2020,9(2):594-597.
|
[8] |
Yang X F, Li X, Adair K, et al. Structural design of lithium-sulfur batteries: from fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018,1(3):239-293.
|
[9] |
Liu Y T, Han D D, Wang L, et al. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery[J]. Advanced Energy Materials, 2019,9(11):1803477.
|
[10] |
Zhang B (张波), Liu J(刘佳), Liu X C(刘晓晨), Electrochemical properties of sulfur in different carbon support materials[J], Journal of Electrochemistry (电化学), 2019,25(6):749-756.
|
[11] |
Liang J(梁骥), Wen L(闻雷), Cheng H M(成会明), et al. Applications of carbon materials in electrochemical energy storage[J]. Journal of Electrochemistry (电化学), 2015,21(6):505-517.
|
[12] |
Liu Y T, Liu S, Li G R, et al. High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery[J]. Advanced Science, 2020,7(12):1903693.
URL
pmid: 32596113
|
[13] |
Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015,6:5682.
doi: 10.1038/ncomms6682
URL
pmid: 25562485
|
[14] |
Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017,33:306-312.
|
[15] |
Wang L, Song Y H, Zhang B H, et al. Spherical metal oxides with high tap density as sulfur host to enhance cathode volumetric capacity for lithium-sulfur battery[J]. ACS Applied Materials & Interfaces, 2020,12(5):5909-5019.
URL
pmid: 31944646
|
[16] |
Pu J, Shen Z H, Zheng J X, et al. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance[J]. Nano Energy, 2017,37:7-14.
|
[17] |
Wang H T, Zhang Q F, Yao H B, et al. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials[J]. Nano Letters, 2014,14(12):7138-7144.
doi: 10.1021/nl503730c
URL
pmid: 25372985
|
[18] |
Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(7):1694-1703.
|
[19] |
Sun Z H, Zhang J Q, Yin L C, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017,8:14627.
URL
pmid: 28256504
|
[20] |
Zhang Z, Wu D H, Zhou Z, et al. Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery[J]. Science China Materials, 2018,62(1):74-86.
|
[21] |
Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle[J]. Advanced Energy Materials, 2016,6(6):1501636.
|
[22] |
Zhang L, Ji L W, Glans P A, et al. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells[J]. Physical Chemistry Chemical Physics, 2012,14(39):13670-13675.
URL
pmid: 22968125
|
[23] |
Zhou G M, Paek E, Hwang G S, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J]. Nature Communications, 2015,6:7760.
doi: 10.1038/ncomms8760
URL
pmid: 26182892
|
[24] |
Zhou G M, Tian H Z, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840-845.
doi: 10.1073/pnas.1615837114
URL
pmid: 28096362
|