[1] Van Noorden R. A better battery[J]. Nature, 2014, 507(7490): 26-28.
[2] Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2011, 50(26): 5904-5908.
[3] Chen L, Shaw L L. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 267: 770-783.
[4] Yuan S Y(袁守怡), Pang Y(庞莹), Wang L N(王丽娜), et al. Advances and prospects of lithium-sulfur batteries[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 453-463.
[5] Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200.
[6] Wang J L, Yang J, Xie J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502.
[7] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[8] Arora P, Zhang Z. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462.
[9] Cheon S E, Choi S S, Han J S, et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode[J]. Journal of The Electrochemical Society, 2004, 151(12): A2067-A2073.
[10] Jin Z Q, Xie K, Hong X B, et al. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells[J]. Journal of Power Sources, 2012, 218: 163-167.
[11] Huang J Q, Zhang Q, Peng H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy & Environmental Science, 2014, 7(1): 347-353.
[12] Yao H B, Yan K, Li W Y, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J]. Energy & Environmental Science, 2014, 7(10): 3381-3390.
[13] Chung S H, Manthiram A. Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries[J]. Advanced Materials, 2014, 26(9): 1360-1365.
[14] Balach J, Jaumann T, Klose M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 25(33): 5285-5291.
[15] Peng H J, Wang D W, Huang J Q, et al. Janus Separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries[J]. Advanced Science, 2016, 3(1): 1500268.
[16] Walther A, Müller A H E. Janus particles: synthesis, selfassembly, physical properties, and applications[J]. Chemical Reviews, 2013, 113(7): 5194-5261.
[17] Pang Q, Tang J T, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(39): 6021-6028.
[18] Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule, 2018, 2 (2): 323-336.
[19] Wang H Q, Zhang W C, Liu H K, et al. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016, 55(12): 3992-3996.
[20] Kang H S, Sun Y K. Freestanding bilayer carbon-sulfur cathode with function of entrapping polysulfide for high performance Li-S batteries[J]. Advanced Functional Materials, 2016, 26(8): 1225-1232.
[21] Yim T, Han S H, Park N H, et al. Effective polysulfide rejection by dipole-aligned BaTiO3 coated separator in lithium-sulfur batteries[J]. Advanced Functional Materials, 2016, 26(43): 7817-7823.
[22] Su Y S, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications, 2012, 3: 1166.
[23] Zheng Z M, Guo H C, Pei F, et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries[J]. Advanced Functional Materials, 2016, 26(48): 8952-8959.
[24] Bai S Y, Liu X Z, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1(7): 16094.
[25] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460.
[26] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.
[27] Bai S Y, Sheng T L, Tan C H, et al. Distinct anion sensing by a 2D self-assembled Cu(I)-based metal-organic polymer with versatile visual colorimetric responses and efficient selective separations via anion exchange[J]. Journal of Materials Chemistry A, 2013, 1(9): 2970-2973.
[28] Stavila V, Talin A A, Allendorf M D. MOF-based electronic and opto-electronic devices[J]. Chemical Society Reviews, 2014, 43(16): 5994-6010.
[29] Bai S Y, Zhu K, Wu S C, et al. A long-life lithium-sulphur battery by integrating zinc-organic framework based separator[J]. Journal of Materials Chemistry A, 2016, 4(43): 16812-16817.
[30] Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817.
[31] Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications, 2012, 48(70): 8817-8819.
[32] Manthiram A, Fu Y, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
[33] Su Y S, Fu Y Z, Guo B K, et al. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple[J]. Chemistry-A European Journal, 2013, 19(26): 8621-8626.
[34] Su Y S, Fu Y, Cochell T, et al. A strategic approach to recharging lithium-sulphur batteries for long cycle life[J]. Nature Communications, 2013, 4: 2985.
[35] Fu Y, Su Y S, Manthiram A. Li2S-carbon sandwiched electrodes with superior performance for lithium-sulfur batteries[J]. Advanced Energy Materials, 2014, 4(1): 1300655.
[36] Zu C X, Su Y S, Fu Y Z, et al. Improved lithium-sulfur cells with a treated carbon paper interlayer[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2291-2297.
[37] Chung S H, Manthiram A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chemical Communications, 2014, 50(32): 4184-4187.
[38] Zhang K, Qin F R, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium-sulfur battery[J]. Journal of Solid State Electrochemistry, 2014, 18(4): 1025-1029.
[39] Chung S H, Manthiram A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells[J]. ChemSusChem, 2014, 7(6): 1655-1661.
[40] He X M, Ren J G, Wang L, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries[J]. Journal of Power Sources, 2009, 190(1): 154-156.
[41] Yuan L X, Yuan H P, Qiu X P, et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journal of Power Sources, 2009, 189(2): 1141-1146.
[42] Xiao Z B, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18): 2891-2898.
[43] Zhao T, Ye Y, Peng X, et al. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush[J]. Advanced Functional Materials, 2016, 26(46): 8418-8426.
[44] Balach J, Jaumann T, Mühlenhoff S, et al. Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries[J]. Chemical Communications, 2016, 52(52): 8134-8137.
[45] Li Q, Liu M, Qin X Y, et al. Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(33): 12973-12980.
[46] Xing L B, Xi K, Li Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303: 22-28.
[47] Wu K S, Hu Y, Shen Z, et al. Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6 (6): 2693-2699.
[48] Chung S H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(43): 7352-7357.
[49] Seh Z W, Wang H T, Liu N, et al. High-capacity Li2S-graphene oxide composite cathodes with stable cycling performance[J]. Chemical Science, 2014, 5(4): 1396-1400.
[50] Seh Z W, Zhang Q F, Li W Y, et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chemical Science, 2013, 4(9): 3673-3677.
[51] Kim J, Cote L J, Huang J X. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356-1364.
[52] Lightcap I V, Kamat P V. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing[J]. Accounts of Chemical Research, 2012, 46(10): 2235-2243.
[53] Wang X F, Wang Z X, Chen L Q. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery[J]. Journal of Power Sources, 2013, 242: 65-69.
[54] Chung S H, Manthiram A. Lithium-sulfur batteries with superior cycle stability by employing porous current collectors[J]. Electrochimica Acta, 2013, 107: 569-576.
[55] Barchasz C, Mesguich F, Dijon J, et al. Novel positive electrode architecture for rechargeable lithium/sulfur batteries[J]. Journal of Power Sources, 2012, 211: 19-26.
[56] Yu J P(余劲鹏), Zhang M(张明), Ding F(丁飞), et al. Effects of carbon interlayer on electrochemical performance of lithium-sulfur cell[J]. Journal of Electrochemistry (电化学), 2014, 20(2): 105-109.
[57] Chen S Q, Sun B, Xie X Q, et al. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life[J]. Nano Energy, 2015, 16: 268-280.
[58] Lu S T, Cheng Y W, Wu X H, et al. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers[J]. Nano Letters, 2013, 13(6): 2485-2489.
[59] Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.
[60] Zhou G, Yin L C, Wang D W, et al. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano, 2013, 7(6): 5367-5375.
[61] Zhou L(周兰), Yu A S(余爱水). Current status and prospect of cathode materials for lithium sulfur batteries[J]. Journal of Electrochemistry(电化学), 2015, 21(3): 211-220.
[62] Seh Z W, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331.
[63] Wang X L, Li G, Li J D, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2533-2538.
[64] Li Z, Zhang J T, Lou X W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015, 54(44): 12886-12890.
[65] Dai C L, Lim J M, Wang M Q, et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(14): 1704443.
[66] Hu L Y, Dai C L, Liu H, et al. Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2018: 1800709.
[67] Zheng J M, Tian J, Wu D X, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014, 14(5): 2345-2352.
[68] Yu L, Zhang G Q, Yuan C Z, et al. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes[J]. Chemical Communications, 2013, 49(2): 137-139.
[69] Li J F, Xiong S L, Liu Y R, et al. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries[J]. ACS Applied Materials&Interfaces, 2013, 5(3): 981-988.
[70] Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015, 54(13): 3907-3911.
[71] Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(13): 1702485.
[72] Aurbach D, Zinigrad E, Teller H, et al. Factors which limit the cycle life of rechargeable lithium (metal) batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1274-1279.
[73] Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.
[74] Mikhaylik Y V, Kovalev I, Schock R, et al. High energy rechargeable Li-S cells for EV application: status, remaining problems and solutions[J]. ECS Transactions, 2010, 25(35): 23-34.
[75] Zheng J M, Gu M, Chen H H, et al. Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(29): 8464-8470.
[76] Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of The Electrochemical Society, 2009, 156(8): A694-A702.
[77] Demir-Cakan R, Morcrette M, Guéguen A, et al. Li-S batteries: simple approaches for superior performance[J]. Energy & Environmental Science, 2013, 6(1): 176-182.
[78] Huang C, Xiao J, Shao Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications, 2014, 5: 3015. |