[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Tarascon J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510.
[3] Wadia C, Albertus P, Srinivasan V. Resource constraints on the battery energy storage potential for grid and transportation applications[J]. Journal of Power Sources, 2011, 196(3): 1593-1598.
[4] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0<x<1): A new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980, 15(6): 783-
789.
[5] Newman G H, Klemann L P. Ambient temperature cycling of an Na-TiS2 cell[J]. Journal of The Electrochemical Society, 1980, 127(10): 2097-2099.
[6] Whittingham M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[7] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices [J]. Science, 2011, 334(6058): 928-935.
[8] Zhang J F(张京飞), Lu J(陆静), Yang X Y(杨晓宇), et al. Synthesis of porous carbon nanosheets for application in sodium-ion battery[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 548-553.
[9] Balogun M S, Luo Y, Qiu W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178.
[10] Xie X Q, Kretschmer K, Zhang J Q, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries[J]. Nano Energy, 2015, 13: 208-217.
[11] Luo W, Lorger S, Wang B, et al. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures[J]. Chemical Communications, 2014, 50(41): 5435-5437.
[12] Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19(18): 2465-2468.
[13] Kim Y, Ha K H, Oh S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry, 2015, 45(50): 11980-11992.
[14] Su H, Jaffer S, Yu H. Transition metal oxides for sodium-ion batteries[J]. Energy Storage Materials, 2016, 5: 116-131.
[15] Xu Z L, Lim K, Park K Y, et al. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(29): 1802099.
[16] Kim K T, Ali G, Chung K Y, et al. Anatase titania nano-rods as an intercalation anode material for rechargeable sodium batteries[J]. Nano Letters, 2014, 14(2): 416-422.
[17] Wu L M, Buchholz D, Bresser D, et al. Anatase TiO2 nanoparticles for high power sodium-ion anodes[J]. Journal of Power Sources, 2014, 251(4): 379-385.
[18] Longoni G, Cabrera R L P, Polizzi S, et al. Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties[J]. Nano Letters, 2017, 17(2): 992-1000.
[19] Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters, 2011, 2 (20): 2560-2565.
[20] Bi Z, Paranthaman M P, Menchhofer P A, et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries[J]. Journal of Power Sources, 2013, 222(2): 461-466.
[21] Su D W, Dou S X, Wang G X. Anatase TiO2 : Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries[J]. Chemistry of Materials, 2015, 27(17): 6022-6029.
[22] Yang F H, Zhang Z A, Han Y, et al. TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries[J]. Electrochimica Acta, 2015, 178: 871-876.
[23] Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters, 2011, 2(20): 2560-2565.
[24] Wang G M, Yang Y, Han D D, et al. Oxygen defective metal oxides for energy conversion and storage[J]. Nano Today, 2017, 13: 23-29.
[25] Chen J, Song W X, Hou H S, et al. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 25(43): 6793-6801.
[26] Chen J, Ding Z Y, Wang C, et al. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies[J]. ACS Applied Materials Interfaces, 2016, 8(14): 9142-9151.
[27] Babu B, Ullattil S G, Prasannachandran R, et al. Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5401-5412.
[28] Zhang Y, Ding Z Y, Foster C W, et al. Oxygen vacancies evoked blue TiO2(B) nanobelts with effciency enhancement in sodium storage behaviors[J]. Advanced Functional Materials, 2017, 27(27): 1700856.
[29] Wu Y, Liu X W, Yang Z Z, et al. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries[J]. Small, 2016, 12(26): 3522-3529.
[30] Liu S A , Cai Z Y , Zhou J, et al. Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications[J]. Journal of Materials Chemistry A, 2016, 4(47): 18278-18283.
[31] Ni J F, Fu S D, Wu C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Advanced Materials, 2016, 28(11): 2259-2265.
[32] Hwang J Y, Myung S T, Lee J H, et al. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes[J]. Nano Energy, 2015, 16: 218-226.
[33] Wang B F, Zhao F, Du G D, et al. Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries[J]. ACS Applied Materials Interfaces, 2016, 8(25): 16009-16015.
[34] He H N, Sun D, Zhang Q, et al. Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties[J]. ACS Applied Materials Interfaces, 2017, 9(7): 6093-7103.
[35] Hong Z S, Kang M L, Chen X H, et al. Synthesis of mesoporous Co2+-doped TiO2 nanodisks derived from metal organic frameworks with improved sodium storage performance[J]. ACS Applied Materials Interfaces, 2017, 9(37): 32071-32079.
[36] Yan D, Yu C Y, Li D S, et al. Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping[J]. Journal of Materials Chemistry A, 2016, 4(28): 11077-
11085.
[37] Yan D, Yu C Y, Bai Y, et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chemical Communications, 2015, 51(39): 8261-8264.
[38] Usui H,Yoshioka S, Wasada K, et al. Nb-doped rutile TiO2: a potential anode material for Na-ion battery[J]. ACS Applied Materials Interfaces, 2015, 7(12): 6567-6573.
[39] Harunsani M, Oropeza F E, Palgrave R G, et al. Electronic and structural properties of SnxTi1-xO2 (0.0 ≤ x ≤ 0.1) solid solutions[J]. Chemistry of Materials, 2010, 22(4): 1551-
1558.
[40] Yan D, Yu C Y, Bai Y, et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries[J]. Chemical Communications, 2015, 51(39): 8261-8264.
[41] Lee J, Chen Y M, Zhu Y, et al. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries[J]. ACS Applied Materials Interfaces, 2014, 6(23): 21011-21018.
[42] Ge Y Q, Jiang H, Zhu J D, et al. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries[J]. Electrochimica Acta, 2015, 157: 142-148.
[43] Yang Y C, Ji X B, Jing M J, et al. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10): 5648-5655.
[44] Chu C X, Yang J, Zhang Q Q, et al. Biphase-interface enhanced sodium storage and accelerated charge transfer: flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries[J]. ACS Applied Materials Interfaces, 2017, 9(50): 43648-43656.
[45] Bresser D, Oschmann B, Tahir M N, et al. Carbon-coated anatase TiO2 nanotubes for Li- and Na-ion anodes[J]. Journal of The Electrochemical Society, 2015, 162(29): 3013-3020.
[46] Tahir M N, Oschmann B, Buchholz D, et al. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(4): 1501489.
[47] Cha HA, Jeong H M, Kang J K. Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(15): 5182-5186.
[48] Liu H Q, Cao K Z, Xu X H, et al. Ultrasmall TiO2 nano-particles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11239-11245.
[49] Hong Z S, Zhou K Q, Zhang J W, et al. Self-assembled synthesis of mesocrystalline TiO2@C-rGO hybrid nano-structures for highly reversible sodium storage[J]. Crystal Growth & Design, 2016, 16(11): 6605-6612.
[50] Le Z Y, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-Graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2952-2960.
[51] Xu G L, Xiao L S, Sheng T, et al. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid[J]. Nano Letters, 2018, 18(1): 336-346.
[52] He H N, Gan Q M, Wang H Y, et al. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries[J]. Nano Energy, 2018, 44: 217-227.
[53] Guan D D, Yu Q, Xu C, et al. Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance[J]. Nano Research, 2017, 10(12): 4351-4359.
[54] Zhang Y, Wang C W, Hou H S, et al. Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances[J]. Advanced Energy Materials, 2017, 7(4): 1600173.
[55] Xu Y, Zhou M, Wen L Y, et al. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes[J]. Chemistry of Materials, 2015, 27(12): 4274-4280.
[56] Wang N N, Bai Z C, Qian Y T, et al. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries[J]. Advanced Materials, 2016, 28(21): 4126-4133.
[57] Wang N N, Bai Z C, Qian Y T, et al. One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 447-454.
[58] Mao M L, Yan F L, Cui C Y, et al. Pipe-wire TiO2-Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries[J]. Nano Letters, 2017, 17(6): 3830-3836.
|