[1] Guengerich F P. Cytochrome P450 enzymes in the generation of commercial products[J]. Nature reviews-Drug discovery, 2002, 1(5): 359-366.[2] Schneider E, Clark D S. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors[J]. Biosensors & Bioelectronics, 2013, 39(1): 1-13.[3] Bistolas N, Wollenberger U, Jung C, et al. Cytochrome P450 biosensors—a review[J]. Biosensors & Bioelectronics, 2005, 20(12): 2408-2423.[4] Krishnan S, Schenkman J B, Rusling J F. Bioelectronic delivery of electrons to cytochrome P450 enzymes[J]. Journal of Physical Chemistry B, 2011, 115(26): 8371-8380.[5] Estabrook R W, Faulkner K M, Seth M S, et al. Application of electrochemistry for P450-catalyzed reactions[J]. Method in Enzymology, 1996, 272: 44-51.[6] Reipa V, Mayhew M P, Vilker V L. A direct electrode-driven P450 cycle for biocatalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25): 13554-13558.[7] Wirtz M, Klucik J, Rivera M. Ferredoxin-mediated electrocatalytic dehalogenation of haloalkanes by Cytochrome P450cam[J]. Journal of the American Chemical Society, 2000, 122(6): 1047-1056.[8] Kazlauskaite J, Westlake A C G, Wong L, et al. Direct electrochemistry of cytochrome P450cam[J]. Chemical Communications, 1996, 18: 2189-2190.[9] Lo K K, Wong L, Hill H A O. Surface-modified mutants of cytochrome CYP101 enzymatic properties and electrochemistry[J]. FEBS Letters, 1999, 451: 342-346.[10] Fantuzzi A, Fairhead M, Gilardi G. Direct electrochemistry of immobilized human cytochrome P450 2E1[J]. Journal of the American Chemical Society, 2004, 126(16): 5040-5041.[11] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films, 1992, 210(2): 831-835. [12] Lvov Y, Decher G, Moehwald H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine)[J]. Langmuir, 1993, 9(2): 481-486.[13] Ariga K, Kunitake T. Sequential catalysis in organized multienzyme films[M]//Ed. Lvov Y, M?hwald H. Protein architecture: Interfacing molecular assemblies and immobilization biotechnology. New York: Marcel Dekker, Inc., 2000: 169-192.[14] Lvov Y M. Thin film nanofabrication by alternate adsorption of polyions, nanoparticles, and proteins[M]// Ed. Nalwa R W. Handbook of surfaces and interfaces of materials (Vol. 3). Nanostructured materials, micelles and colloids. San Diego, CA: Academic Press, 2001: 169-188.[15] Zhou L P, Yang J, Estavillo C, et al. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films[J]. Journal of the American Chemical Society, 2003, 125(5): 1431-1436.[16] Lvov Y M, Lu Z Q, Schenkman J B, et al. Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions[J]. Journal of the American Chemical Society, 1998, 120(17): 4073-4080[17] Munge B, Estavillo C, Schenkman J B, et al. Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome P450cam and myoglobin[J]. ChemBioChem: A European Journal of Chemical Biology, 2003, 4(1): 82-89.[18] Sultana N, Schenkman J B, Rusling J F. Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases[J]. Journal of the American Chemical Society, 2005, 127(29): 13460-13461.[19] Krishnan S, Wasalathanthri D, Zhao L L, et al. Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s[J]. Journal of the American Chemical Society, 2011, 133(5): 1459-1465[20] Huang M H, Xu X, Yang H, et al. Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites[J]. RSC Advances, 2012, 2(33): 12844-12850.[21] Sugihara N. Immobilization of cytochrome P450 and electrochemical control of its activity[J]. Polymers for Advanced Technologies, 1998, 9(5): 307-313.[22] Alonso-Lomilloa M A, Gonzalo-Ruizb J, Domínguez-Renedoa O, et al. CYP450 biosensors based on gold chips for antiepileptic drugs determination[J]. Biosensors & Bioelectronics, 2008, 23(11): 1733-1737.[23] Dai C, Ding Y, Li M, et al. Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black[J]. Microchimica Acta, 2012, 176(3/4): 397-404.[24] Liu S Q, Peng L, Yang X D, et al. Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing[J]. Analytical Biochemistry, 2008, 375(2): 209-216.[25] Xu X. Wei W. Huang M H, et al. Electrochemically driven drug metabolism via cytochrome P450 2C9 reductase and indium tin oxide nanoparticle composite[J]. Chemical Communications, 2012, 48(63): 7802-7804. [26] Sadeghi S J, Fantuzzi A, Gilardi G. Breakthrough in P450 bioelectrochemistry and future perspectives[J]. Biochimica et Biophysica Acta, 2011, 1814(1): 237-24.[27] Panicco P, Dodhia V R, Fantuzzi A, et al. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450[J]. Analytical Chemistry, 2011, 83(6): 2179-2186. [28] Fantuzzi A, Fairhead M, Gilardi G. Direct electrochemistry of immobilized human cytochrome P450 2E1[J]. Journal of the American Chemical Society, 2004, 126(16): 5040-5041.[29] Fantuzzi A, Capria E, Mak L H, et al. An electrochemical microfluidic platform for human P450 drug metabolism profiling[J]. Analytical Chemistry, 2010, 82(24): 10222-10227.[30] Fantuzzi A, Mak L H, Capria E, et al. A New standardized electrochemical array for drug metabolic profiling with human Cytochromes P450[J]. Analytical Chemistry, 2011, 83(10): 3831-3839.[31] Tanne J, Schafer D, Khalid W, et al. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots[J]. Analytical Chemistry, 2011, 83(20): 7778-7785.[32] Zhao W W, Ma Z Y, Yu P P, et al. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode[J]. Analytical Chemistry, 2012, 84(2): 917-923.[33] Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis[J]. Angewandte Chemie International Edition, 2008, 47(40): 7602-7625.[34] Onoda A, Himiyama T, Ohkubo K, et al. Photochemical properties of a myoglobin-CdTe quantum dot conjugate[J]. Chemical Communications, 2012, 48(65): 8054-8056.[35] Stoll C, Kudera S, Parak W J, et al. Quantum dots on gold: Electrodes for photoswitchable cytochrome c electrochemistry[J]. Small, 2006, 2(6): 741-743l.[36] Katz E, Zayats M, Willner I, et al. Controlling the direction of photocurrents by means of CdS nanoparticles and cytochromec-mediated biocatalytic cascades[J]. Chemical Communications, 2006, 13: 1395-1397.[37] Xu X, Qian J, Yu J C, et al. Cytochrome P450 enzyme functionalized-quantum dot as photocatalysts for drug metabolism[J]. Chemical Communications, 2014, 50(57): 7607-7610. |