欢迎访问《电化学》期刊官方网站,今天是 分享到:

电化学 ›› 2016, Vol. 22 ›› Issue (3): 244-259.doi: 10.13208/j.electrochem.151241

• 电化学获奖人优秀论文专辑 • 上一篇    下一篇

环金属钌配合物的合成、结构多样性及氧化还原调控

龚忠亮1, 邵将洋1, 钟羽武1,2*   

  1. 1.中国科学院化学研究所 光化学重点实验室,北京,100190;2. 中国科学院大学,北京 100049
  • 收稿日期:2015-12-12 修回日期:2016-01-21 出版日期:2016-06-28 发布日期:2016-01-25
  • 通讯作者: 钟羽武 E-mail:zhongyuwu@iccas.ac.cn
  • 作者简介:钟羽武

Synthesis, Structural Diversity, and Redox Control of Cyclometalated Monoruthenium Complexes

GONG Zhong-Liang1, SHAO Jiang-Yang1, and ZHONG Yu-Wu1,2*   

  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-12-12 Revised:2016-01-21 Online:2016-06-28 Published:2016-01-25
  • Contact: ZHONG Yu-Wu E-mail:zhongyuwu@iccas.ac.cn
  • About author:ZHONG Yu-Wu
  • Supported by:

    the National Natural Science Foundation of China (Nos. 91227104, 21271176, 21472196, 21501183, and 21521062), the National Basic Research 973 program of China (No.S 2011CB932301 and 2011CB808402), the “Hundred Talent” Program and the Strategic Priority Research Program (No. XDB 12010400) of the Chinese Academy of Sciences.

摘要:

环金属钌配合物具有良好的氧化还原和光物理性质,在诸多光电领域如染料敏化太阳能电池、电致变色、电子转移等方面具有重要应用。环金属钌配合物的合成方法主要包括“后期金属化”、“前期金属化”、“转金属化”三种方法。环金属配合物具有丰富的结构多样性。环金属配合物由环金属配体和辅基配体与金属螯合形成。环金属配体包括NC、NNC、NCN和CCC-类型多齿配体。辅基配体主要包括吡啶、咪唑、三唑、嘧啶等杂环。碳-金属键的引入大大降低了钌配合物的氧化还原电位。通过改变环金属配体和辅基配体的结构,可以对金属的氧化还原电位进行有效调控。金属钌配合物的氧化还原电位对敏化电池的性能以及电子转移的过程具有重要的影响。

关键词: 金属钌配合物, 多吡啶配体, 电化学, 氧化还原活性材料, 功能配合物

Abstract:

Cyclometalated ruthenium complexes have received increasing attractions recently due to their excellent redox and photophysical properties. One structural feature of these complexes is that there is a ruthenium-carbon (Ru-C) σ bond presented in the molecule. Three common methods, namely, the “late metalation”, “early metalation”, and “transmetalation” methods, for the synthesis of cyclometalated ruthenium complexes are discussed and summarized. General strategies for the design of cyclometalating ligand and cyclometalated ruthenium complexes are introduced. By using different ancillary ligands, such as pyridine, imidazole, triazole, and pyrimidine, a great number of ruthenium complexes can be prepared. The presence of the Ru-C bond significantly decreases the ruthenium oxidation potential. The redox control of these complexes can be realized by using different ancillary ligands and substituents.

Key words: ruthenium complexes, polypyridyl ligands, electrochemistry, redox-active materials, functional complexes

中图分类号: