石墨可以在高电势下电化学可逆存储阴离子,有望在高电压储能器件中担当正极材料.本文介绍了基于阴离子-石墨嵌层化合物型正极材料的高比能电容器的研究进展,剖析了影响电容器性能的各方面因素,探讨了一系列表征相关电极材料储能机制的方法和手段,揭示了溶剂化效应对阴离子插嵌石墨正极电化学行为的关键性作用.并进一步概述了该种正极材料近年来在新型储能器件-双离子电池中的发展态势,展望了其应用前景和即将面临的潜在问题.
具有高比表面积、良好导电性的多孔碳材料在超级电容器中有着广泛的应用前景. 大量的研究工作致力于通过物理或者化学手段合成并调控多孔材料的微观结构. 在众多多孔碳材料的制备方式中,氢氧化钾作为一种高效的活化剂,常用于制备具有良好孔径分布和高比表面积多孔碳电极材料. 本文主要结合作者课题组的研究工作,着重概述利用氢氧化钾活化sp2碳纳米材料制备多孔碳材料的机理过程、结构形貌的转变以及所得材料的电化学性能,希望对发展新型的高性能基多孔碳材料的超级电容器电极材料有所帮助.
超级电容器因其在电动车和便携式设备上巨大的应用潜力而受到广泛关注. 电极材料是超级电容器的关键组成部分, 决定了超级电容器性能的好坏. 近来大量研究以碳材料和过渡金属化合物作为电极材料. 然而, 碳材料电容值极小与过渡金属化合物导电性和稳定性差, 极大地限制了它们在超级电容器中的应用. 本综述重点介绍了我们课题组近年来在设计、可控制备及优化碳材料与过渡金属氧/氮化物电容性能的相关研究工作, 并讨论了材料构效关系及其调控机理. 最后对碳材料和过渡金属化合物作为电极材料的日后研究进行了展望.
本文首次提出了一种水系锌离子电容器的新型储能体系,其中以五氧化二钒(V2O5)为正极,具有高比表面积的活性炭(AC)为负极,以及三氟甲基磺酸锌(Zn(TfO)2)为电解质. X射线衍射(XRD)证明二价锌离子作为电荷载体,可以在五氧化二钒(V2O5)中进行可逆的嵌入与脱出. 该锌离子电容器的电位窗口可达1.4 V,具有良好的倍率特性及循环稳定性. 电流密度为1000 mA·g-1 时,电容器的比能量密度为4.5 Wh·kg-1,功率密度可达181 W·kg-1. 本工作为发展新型基于多价离子电化学电容器提供了新思路和新方法.
锂离子混合型电容器兼有锂离子电池和超级电容器的优点,在电化学储能领域具有广泛的应用前景. 但其产业化仍存在一系列的基础及工艺方面的问题,具体包括器件结构设计、电极材料筛选、预嵌锂工艺和电解液与电极的界面等. 本文结合作者课题组的研究工作介绍了近年来高能量密度的锂离子混合型电容器的研究进展,内容涉及锂离子电容器正/负极材料的筛选、预嵌锂工艺的优化、内并联结构的锂离子电池型超级电容器复合正极组成材料的调控、隔膜的选择、电解液的组成、以及器件的高/低温性能,分析了锂离子电容器的容量衰减机制,探讨了锂离子电池型超级电容器的储能机制,提出了未来对高能量密度的锂离子混合型电容器研究的展望.
兼具有优良的导电能力,高的比表面积和极佳的化学/机械稳定性,具有二维形貌的纳米碳材料近年来逐渐成为超级电容器电极材料的研究热点. 我们在此首次报道一种模板诱导方法以制备具有规整片状形貌的氮掺杂碳材料. 我们将作为硬模板的片状镁铝双金属氢氧化物与熔融的邻苯二胺混合后加入三氯化铁催化剂,进而通过加热使邻苯二胺聚合并碳化,随后刻蚀除去其中的氧化物成分即可以得到具有规整六边形片状氮掺杂碳材料. 通过改变碳化时的温度,可以有效的调节利用该方法所得到的氮掺杂碳片的形貌、结构、石墨化程度、氮含量以及比表面积. 更重要的是这些氮掺杂碳片在用作超级电容器电极材料时体现出优异的电化学性能,在0.5 A·g-1的电流密度下其比容量可以达到290.0 F·g-1的. 在1 A·g-1的电流密度下经过10000周循环测试后,其容量仍然可以达到初始值83%.
为了改善锂电隔膜的亲液性和耐高温性,以醋酸纤维素为成膜材料,利用相转化法制备了新型锂电隔膜,通过形貌和孔道结构表征、亲液性能和耐热性能测试对醋酸纤维素隔膜的基本性能进行研究,并将该隔膜装配成锂离子电池进行充放电性能测试. 结果表明,醋酸纤维素隔膜具有均匀的微孔结构,孔隙率达到65%,约为传统聚烯烃隔膜的1.5倍;纤维素材料的良好亲液性和高孔隙率结构改善了隔膜的吸液性能,其吸液率达到285%;该隔膜在150 oC、30 min的热处理条件下未发生明显的热收缩. 鉴于上述优点,相对于市售PE隔膜,醋酸纤维素隔膜所装配锂离子电池显示出更优的循环性能和倍率性能.