[1] Rice C, Ha R I, Masel R I, et al. Direct formic acid fuel cells [J]. Journal of Power Sources, 2002, 111(1): 83-89.[2] Dillon R, Srinivasan S, Arico A S, et al. International activities in DMFC R&D: status of technologies and potential applications [J]. Journal of Power Sources 2004, 127(1/2): 112-126.[3] Zhu Y M, Ha S Y, Masel R I. High power density direct formic acid fuel cells [J]. Journal of Power Sources 2004, 130(1/2): 8-14.[4] Tian N, Zhou Z Y, Ding Y, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity [J]. Science, 2007, 316(5825): 732-735.[5] Chen W, Kim J M, Sun S H, et al. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid [J]. Langmuir, 2007, 23(22): 11303-11310.[6] Chen W, Chen S W. Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation [J]. Journal of Material Chemistry, 2011, 21(25): 9169-9178.[7] Tian N, Zhou Z Y, Yu N F, et al. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation [J]. Journal of the American Chemical Society, 2010, 132(22): 7580-7581.[8] Chen W, Chen S W. Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects [J]. Angewandte Chemie International Edition, 2009, 48(24): 4386-4389.[9] Zhou Z Y, Huang Z Z, Chen D J, et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation [J]. Angewandte Chemie International Edition, 2010, 49(2): 411-414.[10] Lu Y Z, Chen W, One- pot synthesis of heterostructured Pt-Ru nanocrystals for catalytic formic acid oxidation [J]. Chemical Communications, 2011, 47(9): 2541-2543.[11] Chen W, Xu L P, Chen S W, Enhanced electrocatalytic oxidation of formic acid by platinum deposition on ruthenium nanoparticle surfaces [J]. Journal of Electroanalytical Chemistry, 2009, 631(1/2): 36-42.[12] Chen W, Kim J, Sun S H, et al. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J]. Journal of Physical Chemistry C, 2008, 112(10): 3891-3898.[13] Lu Y Z, Chen W. Nanoneedle-covered Pd-Ag nanotubes: high electrocatalytic activity for formic acid oxidation [J]. Journal of Physical Chemistry C, 2010, 114(49): 21190-21200.[14] Shao M H, Shoemaker K, Peles A, et al. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts [J]. Journal of the American Chemical Society, 2010, 132 (27): 9253-9255.[15] Kariuki N N, Wang X, Mawdsley J R, et al. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts [J]. Chemistry of Materials, 2010, 22 (14): 4144-4152.[16] Wang X P, Kariuki N, Vaughey J T, et al. Bimetallic Pd-Cu oxygen reduction electrocatalysts [J]. Journal of The Electrochemical Society, 2008, 155(6): B602-B609.[17] Park K H, Lee Y W, Kang S W, et al. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts [J]. Chemistry - An Asian Journal, 2011, 6(6): 1515-1519.[18] Clavilier J, Armand D, Sun S G, et al. Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions [J]. Journal of Electroanalytical Chemistry, 1986, 205(1/2): 267-277.[19] Lebedeva N P, Koper M T M, Feliu J M, et al. Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111) [J]. Journal of Electroanalytical Chemistry, 2002, 524-525: 242-251.[20] Chen W, Kim J, Sun S H, et al. Electro-oxidation of formic acid catalyzed by FePt nanoparticles [J]. Physical Chemistry Chemical Physics, 2006, 8(23): 2779-2786. |