[1] Takahashi T. Fuel Cells [M]. Dou F L (窦方亮), Xiong Y P (熊岳平), Tr. Fuel Cells [M]. Changchun: Jilin University Press (吉林大学出版社), 1994: 113.[2] Singhal S C. Recent progress in tubular solid oxide fuel cells technology [M]// Electrochemical Society Series. Pennington, Electrochemical Society Inc, 1997, 97(40): 37-50.[3] Sakai N, Yamaji K, Horit T, et al. Control factors of material degradation in SOFC operation [J]. Materia Japan, 2005, 44: 207-210.[4] Yokokawa H, Sakai N, Horit T, et al. Electrolytes for solid oxide fuel cells [J]. MRS Bulletin, 2005, 30(8): 591-595.[5] Yamaji K, Xiong Y P, Kishimoto H, et al. Electronic conductivity and efficiency of SOFC electrolytes [M]// Fuel Cell Seminar. Pennington, Electrochemical Society Inc, 2007, 12(1): 317-322.[6] Xiong Y P, Yamaji K, Sakai N, et al. Electronic Conductivity of ZrO2-CeO2-YO1.5 solid solutions [J]. Journal of the Electrochemical Society, 2001, 12(148): 489-492.[7] Xiong Y P, Yamaji K, Horita T, et al. Electronic conductivity of 20mol% Y2O1.5 doped CeO2 [J]. Journal of the Electrochemical Society, 2002, 11(149): 450-454.[8] Xiong Y P, Yamaji K, Horita T, et al. Hole and electron conductivities of 20 mol%-ReO1.5 doped CeO2 (Re = Yb, Y, Gd, Sm, Nd, La). Journal of the Electrochemical Society, 2004, 3(151): A407-A412.[9] Xiong Y P, Yamaji K, Kishimoto H, et al. Electronic conductivity of ZrO2 - CeO2 - YO1.5 solid solutions in a wide range of temperature and oxygen partial pressure [J]. Journal of the Electrochemical Society, 2006, 12(153): A2189-A2204.[10] Sakai N, Xiong Y P, Yamaji K, et al. Transport properties of ceria-zirconia-yttria solid solutions {(CeO2)x(ZrO2)1-x}1-y(YO1.5)y (x = 0 ~ 1, y = 0.2, 0.35) [J]. Journal of Alloys and Compounds, 2006, 408-412: 503-506.[11] Sakai N, Xiong Y P, Yamaji K, et al. Anomalous conductivity and microstructure in gadolinium doped ceria prepared from nano-sized powder [J]. Solid State Ionics, 2006, 177:2503-2507.[12] Xie M, Zhan Z L, Liu X J, et al. Low-temperature ceria-electrolyte solid oxide fuel cells for efficient methanol oxidation [J]. Journal of Power Sources, 2011, 196(23): 9961-9964.[13] Ishihara T, Mtsuda H, Takita Y. Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor [J]. Journal of the American chemical society, 1994, 116(9):3801-3803. [14] Ishihara T, Mtsuda H, Takita Y. Effects of rare-earth cations doped for La site on the oxide ionic conductor of LaGaO3-based perovskite-type oxide [J]. Solid State Ionics, 1995, 79: 147-151.[15] Murakami N, Nakamura S, Sato M, et al. R&D intermediate-temperature SOFC using LaGaO3-based oxide as electrolyte (6) [C]// Extended Abstracts of the 15th symposium on SOFC in Japan, Tokyo, The SOFC Society of Japan, 2006: 103A.[16] Yamaji K, Xiong Y P, Kishimoto H, et al. Electronic conductivity of doped lanthanum gallate electrolytes [C]// Solid state ionics: The science and technology of ions in motion, Singapore, World Scientific Publishing Co. Pte. Ltd., 2004: 253-260.[17] Yamaji K, Xiong Y P, Kishimoto H, et al. Electronic conductivity of La0.8Sr0.2Ga0.8Mg0.2-xCoxO3-δ electrolytes (II) [C]// Solid state ionics: Advanced materials for emerging technologies, Singapore, World Scientific Publishing Co. Pte. Ltd., 2006: 252-259.[18] Han M F, Peng S P, Wang Z L, et al. Properties of Fe-Cr based alloys as interconnects in a solid oxide fuel cell [J]. Journal of Power Sources, 2007, 164(1): 278-283.[19] Horita T, Xiong Y P, Kishimoto H, et al. Oxidation behavior of Fe-Cr and Ni-Cr based alloy interconnects in CH4-H2O for solid oxide fuel cells [J]. Journal of the Electrochemical Society, 2005, 152(11): A2193-A2198.[20] Horita T, Xiong Y P, Yamaji K, et al. Stability of Fe-Cr alloy interconnects under CH4-H2O atmosphere for SOFCs [J]. Physical Chemistry Chemical Physics, 2003, 5(11): 2253-2256. [21] Uehara T, Yasuda N, Ohno T, et al. Improvement of oxidation resistance of Fe-Cr ferritic alloy sheets for SOFC interconnects [J]. Electrochemistry, 2009, 77(2): 131-133.[22] Yokokawa H, Sakai N, Kawada T, et al. Thermodynamic analysis on relation between nonstoichiometry of LaMnO3 perovskites and their reactivity with ZrO2 [J]. Denki Kagaku, 1989, 57(8): 829-836. [23]. H. Yokokawa. Generalized chemical potential diagram-its fundamentals and applications part four-extension to multicomponents systems [J]. Materia Japan, 1996, 35: 1345-1351.[24] Huang K Q, Feng M, Goodenough J B, et al. Characterization of Sr-Doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell [J]. Journal of the Electrochemical Society, 1996,143(12): 3630-3636. [25] Huang K Q, Goodenough J B. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer [J]. Journal of Alloys and Compounds, 2000, 303-304: 454-464.[26] Liu R Z (刘仁柱), Huang B (黄波), Ye X F (叶晓峰), et al. Fabrication and performance of Ni-ScSZ Cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC [J]. Journal of Electrochemistry (电化学), 2007, 13(1): 50-56. [27] Yokokawa H, Tu H Y, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability [J]. Journal of Power Sources, 2008, 182(2): 400-412.[28] Sasaki K. Chemical Durability of SOFCs [C]// Extended abstracts of the 17th Symposium on SOFC in Japan. Tokyo, 2008: 34-37.[29] Sasaki K, Susuki K, Iyoshi A, et al. H2S poisoning of solid oxide fuel cells [J]. Journal of the Electrochemical Society, 2006, 153(11):A2023-A2029. [30] Liu R R, Kim S H, Taniguchi S, et al. Influence of water vapor on long-term performance and accelerated degradation. Journal of Power Sources, 2001, 1967, 17(S1): 7090-7096.[31] Kishimoto H, Xiong Y P, Yamaji K, et al. Stability of Ni base anode for direct hydrocarbon SOFCs [J]. Journal of Chemical Engineering of Japan, 2007, 13(40): 1178-1182. [32] Yamaji K, Xiong Y P, Kishimoto H, et al. Study of accelerating tests methods on durability of SOFCs: effect of variation in driving force of reactions and/or in mass transfer of impurities [C]// Extended Abstracts of the 17th Symposium on SOFC in Japan, Tokyo, 2008: 30-33.[33] Xiong Y P, Yamaji K, Kishimoto H, et al. Deposition of platinum particles at LSM/ScSZ/air three-phase boundaries using a platinum current collector [J]. Electrochemical and Solid-State Letters, 2009, 12(3): B31-B33.[34] Xiong Y P, Yamaji K, Horita T, et al. Sulfur poisoning of SOFC cathodes [J]. Journal of the Electrochemical Society, 2009, 5(156): B588-B592.[35] Cheng M J. Investigation on new cathodes for lowering operation temperature [C]// Asia-European Workshop on SOFC, 2008, Dalian, China.[36] Wang S R, Introduction of planar SOFC research activities in SICCAS [C]//, Asia-European Workshop on SOFC, 2008, Dalian, China.[37] Eguchi K. Report on 2008 Korea-Japan-China SOFC Symposium [J], The Jo urnal of Fuel Cell Technology (Japan) 2008, 3(8): 133-134. |