欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (8): 2515002.  doi: 10.61558/2993-074X.3565

• 综述 • 上一篇    下一篇

直接乙醇燃料电池阳极电催化剂的设计与优化:C-C键活化及C1途径选择性调控的研究进展与挑战

秦愷池a, 霍孟田a, 梁宇a, 朱思远b, 邢子豪a,*(), 常进法a,*()   

  1. a多酸与网格材料化学教育部重点实验室东北师范大学化学学院吉林 长春, 130024
    b材料科学与工程学院南洋理工大学新加坡, 639798
  • 收稿日期:2025-04-13 修回日期:2025-05-15 接受日期:2025-06-03 发布日期:2025-06-03 出版日期:2025-08-28

Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells: Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway

Qin Kai-Chia, Huo Meng-Tiana, Liang Yua, Zhu Si-Yuanb, Xing Zi-Haoa,*(), Chang Jin-Faa,*()   

  1. aKey Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
    bSchool of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
  • Received:2025-04-13 Revised:2025-05-15 Accepted:2025-06-03 Online:2025-06-03 Published:2025-08-28
  • Contact: Zi-Hao Xing: xingzh612@nenu.edu.cn; Jin-Fa Chang: changjinfa@nenu.edu.cn

摘要:

直接乙醇燃料电池作为传统能源的有前途替代方案,具有能量密度高、环境可持续性好和操作安全等优势。相较于直接甲醇燃料电池,直接乙醇燃料电池的毒性更低且制备工艺更成熟;与氢-氧燃料电池相比,直接乙醇燃料电池在储存运输可行性和成本效益方面表现更优,显著提升了商业化潜力。然而,乙醇分子中稳定的C-C键会形成高活化能垒,常导致电氧化不完全。目前商用的铂和钯基催化剂对C-C键的断裂效率低下(< 7.5%),严重制约了DEFCs的能量输出和功率密度。此外,催化剂成本高昂和活性不足进一步阻碍了其大规模商业化。近期DEFC阳极催化剂设计的进展主要集中在材料组分优化和催化机理阐释两方面。本综述系统梳理了过去五年乙醇电氧化催化剂的研发动态,重点探讨了提升C1路径选择性和C-C键活化的策略,包括:合金化设计、纳米结构工程、界面协同效应等,并深入分析总结了其作用机制。最后,我们提出了DEFC催化剂商业化面临的挑战与未来发展方向。

关键词: 直接乙醇燃料电池, 乙醇电氧化, C-C键断裂, 电催化, 阳极催化剂

Abstract:

Direct ethanol fuel cells (DEFCs) are a promising alternative to conventional energy sources, offering high energy density, environmental sustainability, and operational safety. Compared to methanol fuel cells, DEFCs exhibit lower toxicity and a more mature preparation process. Unlike hydrogen fuel cells, DEFCs provide superior storage and transport feasibility, as well as cost-effectiveness, significantly enhancing their commercial viability. However, the stable C-C bond in ethanol creates a high activation energy barrier, often resulting in incomplete electrooxidation. Current commercial platinum (Pt)- and palladium (Pd)-based catalysts demonstrate low C-C bond cleavage efficiency (<7.5%), severely limiting DEFC energy output and power density. Furthermore, high catalyst costs and insufficient activity impede large-scale commercialization. Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms. This review systematically examines developments in ethanol electrooxidation catalysts over the past five years, highlighting strategies to improve C1 pathway selectivity and C-C bond activation. Key approaches, such as alloying, nanostructure engineering, and interfacial synergy effects, are discussed alongside their mechanistic implications. Finally, we outline current challenges and future prospects for DEFC commercialization.

Key words: direct ethanol fuel cells, ethanol electrooxidation, C-C bond cleavage, electrocatalysis, anode catalyst