电化学(中英文) ›› 2025, Vol. 31 ›› Issue (8): 2515002. doi: 10.61558/2993-074X.3565
秦愷池a, 霍孟田a, 梁宇a, 朱思远b, 邢子豪a,*(), 常进法a,*(
)
收稿日期:
2025-04-13
修回日期:
2025-05-15
接受日期:
2025-06-03
发布日期:
2025-06-03
出版日期:
2025-08-28
Qin Kai-Chia, Huo Meng-Tiana, Liang Yua, Zhu Si-Yuanb, Xing Zi-Haoa,*(), Chang Jin-Faa,*(
)
Received:
2025-04-13
Revised:
2025-05-15
Accepted:
2025-06-03
Online:
2025-06-03
Published:
2025-08-28
Contact:
Zi-Hao Xing: 摘要:
直接乙醇燃料电池作为传统能源的有前途替代方案,具有能量密度高、环境可持续性好和操作安全等优势。相较于直接甲醇燃料电池,直接乙醇燃料电池的毒性更低且制备工艺更成熟;与氢-氧燃料电池相比,直接乙醇燃料电池在储存运输可行性和成本效益方面表现更优,显著提升了商业化潜力。然而,乙醇分子中稳定的C-C键会形成高活化能垒,常导致电氧化不完全。目前商用的铂和钯基催化剂对C-C键的断裂效率低下(< 7.5%),严重制约了DEFCs的能量输出和功率密度。此外,催化剂成本高昂和活性不足进一步阻碍了其大规模商业化。近期DEFC阳极催化剂设计的进展主要集中在材料组分优化和催化机理阐释两方面。本综述系统梳理了过去五年乙醇电氧化催化剂的研发动态,重点探讨了提升C1路径选择性和C-C键活化的策略,包括:合金化设计、纳米结构工程、界面协同效应等,并深入分析总结了其作用机制。最后,我们提出了DEFC催化剂商业化面临的挑战与未来发展方向。
秦愷池, 霍孟田, 梁宇, 朱思远, 邢子豪, 常进法. 直接乙醇燃料电池阳极电催化剂的设计与优化:C-C键活化及C1途径选择性调控的研究进展与挑战[J]. 电化学(中英文), 2025, 31(8): 2515002.
Qin Kai-Chi, Huo Meng-Tian, Liang Yu, Zhu Si-Yuan, Xing Zi-Hao, Chang Jin-Fa. Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells: Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway[J]. Journal of Electrochemistry, 2025, 31(8): 2515002.
strategy | catalyst | mass activity | specific activity | DEFCs max power density | Ref. |
---|---|---|---|---|---|
alloying | Pd-Au HNS/C | - | 11.5 mA·cm−2 | - | |
Pt3Ga-200/C | - | 2.46 mA·cm−2 | - | ||
PdAg NDs | 2.60 A·mg-1Pd | - | - | ||
PtIrCu | 1.05 A·mg−1 | - | - | ||
Pd3Tb/C | - | 71.5 mA·cm−2 | - | ||
Pd50W27Nb23/C | 15.6 A·mg−1Pd | - | - | ||
high entropy alloying | PtPd HEA | 24.3 A·mg-1PGMs | 21.2 mA·cm-2 | 0.72 W·cm-2 | |
PdRhFeCoMo HEM | 7.47 A·mgPd+Rh−1 | 25.5 mA·cm−2 | 20.1 mW·cm-2 | ||
PtPdCuNiCo HEA-S-Ti3C2Tx | - | 65.6 mA·cm−2 | - | ||
PtRhBiSnSb HEI | 15.58 A·mg−1Pt+Rh | - | - | ||
surface/interface engineering | Pd/Co@N-C | 7.05 A·mg−1Pd | 6.11mA·cm−2 | 0.44 W·cm-2 | |
PdSn-NbN/C | 21.06 A·mgPd−1 | - | - | ||
Pd-Au HNS | 8.0 A·mg−1 Pd+Au | 11.5 mA·cm−2 | - | ||
PtCu-SnO2 | 0.48 A·mgPt−1 | 5.24 mA·cm−2 | - | ||
doping | Pd-Ni-P | 4.95A·mgPd-1 | - | - | |
P-PdMo | 4.95 A·mg-1Pd | 8.28 mA·cm−2 | - | ||
Pd/DB-Ti3C2 | - | 65.6mA·cm-2 | - | ||
nanostructure modulation | r-Pt/Pd20Sb7 HPs | 59.28 A·mg−1Pt | 38.6mA·cm−2Pt | - | |
L12 PdCuSn | 6.22 A·mg−1 | - | - | ||
PdAg | 5.27 A·mg−1 | - | - | ||
a-PdCu | 15.25 A·mg−1Pd | - | - | ||
Pt0.75Rh0.25Pb | 7.8 A·mg−1 | - | - | ||
PdInMo | 2.21 A·mg−1Pd | 6.67 mA·cm−2 | - | ||
carrier regulation | Pd/N&F-C | 26.5 A·mg−1Pd | - | 0.57 W·cm-2 | |
Pt/Al2O3@TiAl | - | 3.83 mA·cm−2Pt | - | ||
Rh-based catalysts | PtBi@PtRh1 | 13.02 A·mg−1Pt+Rh | - | - | |
Rh7Pt1 PBML | 1.77 A·mg−1 | - | - | ||
SnO2-Rh NSs/C | 0.21 A·mg-1Rh | - | - |
[1] | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. http://doi.org/10.1038/nature11475 |
[2] | De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364: 6438. http://doi.org/10.1126/science.aav3506 |
[3] |
Ifan Erfyl Lester Stephens J R, Ib Chorkendorf. Toward sustainable fuel cell[J]. Science, 2016, 354(6318): 1378-1379. https://www.science.org/doi/10.1126/science.aal3303
URL pmid: 27980172 |
[4] | Chen F D, Xie Z Y, Li M T, Chen S G, Ding W, Li L, Li J, We Z D. Series reports from professor wei's group of chongqing university: Advancements in electrochemical energy conversions (1/4): Report 1: High-performance oxygen reduction catalystsfor fuel cells[J]. J. Electrochem., 2024, 30(7): 2314007. https://jelectrochem.xmu.edu.cn/online_first/70/ |
[5] | Song S Q, Chen L K, Liu J G, Liu Z B, Xin Q. Preliminary Study on Direct Ethanol Fuel Cell[J]. J Electrochem, 2002, 8(1): 105-110. https://doi.org/10.61558/2993-074X.3284 |
[6] |
Rao L, Jiang Y X, Zhang B W, You Y X, Li Z H, Sun S G. Electrocatalytic oxidation of ethanol[J]. Prog. Chem., 2014, 26(05): 727-736. https://manu56.magtech.com.cn/progchem/CN/10.7536/PC131015
doi: 10.7536/PC131015 URL |
[7] | Wang L, Lavacchi A, Bevilacqua M, Bellini M, Fornasiero P, Filippi J, Innocenti M, Marchionni A, Miller H A, Vizza F. Energy efficiency of alkaline direct ethanol fuel cells employing nanostructured palladium electrocatalysts[J]. ChemCatChem, 2015, 7: 2214-2221. http://doi.org/10.1002/cctc.201500189 |
[8] | Jiao K, Xuan J, Du Q, Bao Z M, Xie B, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. http://doi.org/10.1038/s41586-021-03482-7 |
[9] |
Bai J, Liu D, Yang J, Chen Y. Nanocatalysts for electrocatalytic oxidation of ethanol[J]. ChemSusChem, 2019, 12(10): 2117-2132. http://doi.org/10.1002/cssc.201803063
doi: 10.1002/cssc.201803063 URL pmid: 30834720 |
[10] | Zheng Y, Wan X J, Cheng X, Cheng K, Dai Z F, Liu Z H. advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells[J]. Catalysts, 2020, 10(2): 166. http://doi.org/10.3390/catal10020166 |
[11] | Chen H M, Zhu S Q, Huang J L, Shao M H. Palladium adatoms on gold nanoparticles as electrocatalysts forethanol electro-0xidation in alkaline solutions[J]. J. Electrochem., 2018, 24(6): 740-747. https://doi.org/10.13208/j.electrochem.180841 |
[12] | Li Q X, Yang Y C, Liu M S, Mao H M, Xu Q J. Preparation of Pd/TiO2/C catalyst and its electrocatalytic performance in basic solution for ethanol oxidation[J]. J. Electrochem., 2014, 20(1): 85-88. http://doi.org/10.13208/j.electrochem.120929 |
[13] |
Rao L, Zhang B W, Li Y Y, Jiang Y X, Sun S G. Electrochemical and spectroscopic studies of ethanol oxidation on nano-cubic Pt modified by tin adatoms[J]. J. Electrochem., 2014, 20(5): 395-400. https://doi.org/10.13208/j.electrochem.131177
doi: 10.13208/j.electrochem.131177 URL |
[14] | Yu Z Y, Huang R, Liu J, Li G, Song Q T, Sun S G. Preparation of PdCoIr tetrahedron nanocatalysts and its performance toward ethanol oxidation reaction[J]. J. Electrochem., 2021, 27(1): 63-75. http://doi.org/10.13208/j.electrochem.200515 |
[15] | Zhu J, Su Y, Ma H, Cheng F Y, Tao Z L, Liang J, Chen J. Electroless-deposition synthesis of highly active PtRuC and PtRuSnC as anode catalysts for DEFC[J]. J. Electrochem., 2008, 14(2): 150-154. https://doi.org/10.61558/2993-074X.1881 |
[16] | Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. http://doi.org/10.1038/nature11115 |
[17] | An L, Zhao T S, Li Y S. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells[J]. Renew. Sust. Energy Rev., 2015, 50: 1462-1468. http://doi.org/10.1016/j.rser.2015.05.074 |
[18] |
Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(Shell) electrocatalyst[J]. J. Am. Chem. Soc., 2019, 141(24): 9629-9636. http://doi.org/10.1021/jacs.9b03474
doi: 10.1021/jacs.9b03474 URL pmid: 31129960 |
[19] | Lv H, Sun L Z, Wang Y Z, Liu S H, Liu B. Highly curved, quasi‐single‐crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis[J]. Adv. Mater., 2022, 34(30): 2203612. http://doi.org/10.1002/adma.202203612 |
[20] | Chang Q, Kattel S, Li X, Liang Z, Tackett B M, Denny S R, Zhang P, Su D, Chen J G, Chen Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts[J]. ACS Catal., 2019, 9(9): 7618-7625. http://doi.org/10.1021/acscatal.9b02039 |
[21] | Zhang W, Zhao Y X, Li J Y, Miao Y, He P, Wu Z X, Zhang Y, Xu G R, Wang L. C-C bond cleavage driven by lattice oxygen during ethanol oxidation process[J]. Adv. Funct. Mater., 2025. 2421763. http://doi.org/10.1002/adfm.202421763 |
[22] | Zhang W Y, Yang Y, Huang B L, Lv F, Wang K, Li N, Luo M C, Chao Y G, Li Y J, Sun Y J, Xu Z K, Qin Y G, Yang W X, Zhou J H, Du Y P, Su D, Guo S J. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials[J]. Adv. Mater., 2019, 31(15): 1805833. http://doi.org/10.1002/adma.201805833 |
[23] | Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nat. Nanotech., 2021, 16(2): 140-147. http://doi.org/10.1038/s41565-020-00824-w |
[24] |
Chen A, Ostrom C. Palladium-based nanomaterials: Synthesis and electrochemical applications[J]. Chem. Rev., 2015, 115(21): 11999-12044. http://doi.org/10.1021/acs.chemrev.5b00324
doi: 10.1021/acs.chemrev.5b00324 URL pmid: 26402587 |
[25] | Wu H X, Li H J, Zhai Y J, Xu X L, Jin Y D. Facile synthesis of free‐standing Pd‐based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation[J]. Adv. Mater., 2012, 24(12): 1594-1597. http://doi.org/10.1002/adma.201104356 |
[26] | Wang Y, Zheng M, Li Y R, Zhu L D, Li H R, Wang Q S, Zhao H, Zhang J W, Dong Y M, Zhu Y F. Atomically dispersed NiO cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites[J]. Adv. Powder Mater., 2024, 3(6): 100244. http://doi.org/10.1016/j.apmate.2024.100244 |
[27] | Wang Y, Zheng M, Li Y R, Chen J Y, Ye J Y, Ye C L, Li S, Wang J, Zhu Y F, Sun S G, Wang D S. Oxygen-bridged long-range dual sites boost ethanol electrooxidation by facilitating C-C bond cleavage[J]. Nano Lett., 2023, 23(17): 8194-8202. http://doi.org/10.1021/acs.nanolett.3c02319 |
[28] | Zhang G L, Cao D J, Guo S Y, Fang Y, Wang Q, Cheng S, Zuo W S, Yang Z Z, Cui P. Tuning the selective ethanol oxidation on tensile‐trained Pt(110) surface by Ir single atoms[J]. Small, 2022, 18(33): 2202587. http://doi.org/10.1002/smll.202202587 |
[29] | Han C, Lyu Y, Wang S, Liu B, Zhang Y, Weigand J J, Du H, Lu J. Highly utilized active sites on Pt@Cu/C for ethanol electrocatalytic oxidation in alkali metal hydroxide solutions[J]. Adv. Funct. Mater., 2023, 33(46): 2305436. http://doi.org/10.1002/adfm.202305436 |
[30] | Chang J, Ko T J, Je M, Chung H S, Han S S, Shawkat M S, Wang M, Park S J, Yu S M, Bae T S, Moon M-W, Oh K H, Choi H, Yang Y, Jung Y. Layer orientation-engineered two-dimensional platinum ditelluride for high-performance direct alcohol fuel cells[J]. ACS Energy Lett, 2021, 6: 3481-3487. http://doi.org/10.1021/acsenergylett.1c01776 |
[31] | Wang S L, Chang J F, Xue H G, Xing W, Feng L G. Catalytic stability study of a Pd-Ni2P/C catalyst for formic acid electrooxidation[J]. ChemElectroChem, 2017, 4(5): 1243-1249. http://doi.org/10.1002/celc.201700051 |
[32] | Li G Q, Feng L G, Chang J F, Wickman B, Gronbeck H, Liu C, Xing W. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2P in direct ethanol fuel cells[J]. ChemSusChem, 2014, 7(12): 3374-3381. http://doi.org/10.1002/cssc.201402705 |
[33] | Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catal., 2014, 4(3): 798-803. http://doi.org/10.1021/cs401198t |
[34] | Liu C, Shen Y, Zhang J F, Li G, Zheng X R, Han X P, Xu L Y, Zhu S Z, Chen Y N, Deng Y D, Hu W B. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction[J]. Adv. Energy Mater., 2022, 12(8): 2103505. http://doi.org/10.1002/aenm.202103505 |
[35] | Yan L, Yao S K, Chang J F, Liu C P, Xing W. Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation[J]. J. Power Sources, 2014, 250: 128-133. http://doi.org/10.1016/j.jpowsour.2013.10.085 |
[36] | Yao H, Zheng Y N, Yu X, Hu S J, Su B, Guo X H. Rational modulation of electronic structure in PtAuCuNi alloys boosts efficient electrocatalytic ethanol oxidation assisted with energy-saving hydrogen evolution[J]. J. Energy Chem., 2024, 93: 557-567. http://doi.org/10.1016/j.jechem.2024.02.037 |
[37] | Chandran A P, Mondal S, Goud D, Bagchi D, Singh A K, Riyaz M, Dutta N, Peter S C. In situ metal vacancy filling in stable Pd‐Sn intermetallic catalyst for enhanced C-C bond cleavage in ethanol oxidation[J]. Adv Mater, 2024., 37(6): 2415362. http://doi.org/10.1002/adma.202415362 |
[38] | Wang G, Aubin M, Mehta A, Tian H, Chang J, Kushima A, Sohn Y, Yang Y. Stabilization of Sn anode through structural reconstruction of a Cu-Sn intermetallic coating layer[J]. Adv. Mater., 2020, 32(42): 2003684. |
[39] |
Wang H J, Zheng H L, Ling L, Fang Q, Jiao L, Zheng L R, Qin Y, Luo Z, Gu W L, Song W Y, Zhu C Z. Pd metallene aerogels with single-atom W doping for selective ethanol oxidation[J]. ACS Nano, 2022, 16(12): 21266-21274. http://doi.org/10.1021/acsnano.2c09270
doi: 10.1021/acsnano.2c09270 URL pmid: 36441949 |
[40] | Ye S H, Feng J X, Li G R. Pd Nanoparticle/CoP nanosheet hybrids: highly electroactive and durable catalysts for ethanol electrooxidation[J]. ACS Catal., 2016, 6(11): 7962-7969. http://doi.org/10.1021/acscatal.6b02263 |
[41] | Chang J F, Feng L G, Liu C P, Xing W, Hu X L. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angew. Chem. Int. Ed., 2014, 53(1): 122-126. http://doi.org/10.1002/anie.201308620 |
[42] | Chang J F, Feng L G, Liu C P, Xing W, Hu X L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ. Sci., 2014, 7(5): 1628-1632. http://doi.org/10.1039/c4ee00100a |
[43] | Ao W D, Ren H J, Cheng C G, Fan Z S, Yin P Q, Qin Q, Zhang Q, Dai L. Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation[J]. Angew. Chem. Int. Ed., 2023, 62(30): e202305158. http://doi.org/10.1002/anie.202305158 |
[44] | Zhang Y, Liu X Z, Liu T Y, Ma X Y, Feng Y G, Xu B Y, Cai W B, Li Y F, Su D, Shao Q, Huang X Q. Rhombohedral Pd-Sb nanoplates with Pd‐terminated surface: An efficient bifunctional fuel-cell catalyst[J]. Adv. Mater., 2022, 34(31): 2202333. http://doi.org/10.1002/adma.202202333 |
[45] | Wang G, Chang J, Koul S, Kushima A, Yang Y. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery[J]. J. Am. Chem. Soc., 2021, 143(30): 11595-11601. http://doi.org/10.1021/jacs.1c04339 |
[46] | Zhang L L, Chang Q W, Chen H M, Shao M H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction[J]. Nano Energy, 2016, 29: 198-219. http://doi.org/10.1016/j.nanoen.2016.02.044 |
[47] |
Qiu Y J, Zhang J, Jin J, Sun J Q, Tang H L, Chen Q Q, Zhang Z D, Sun W M, Meng G, Xu Q, Zhu Y Q, Han A, Gu L, Wang D, Li Y. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction[J]. Nat. Commun., 2021, 12(1): 5273. http://doi.org/10.1038/s41467-021-25600-9
doi: 10.1038/s41467-021-25600-9 URL pmid: 34489455 |
[48] | Zheng J H, Li G, Zhang J M, Cheng N, Ji L F, Yang J, Zhang J, Zhang B W, Jiang Y X, Sun S G. General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts[J]. Sci. China Chem., 2022, 66(1): 279-288. http://doi.org/10.1007/s11426-022-1420-2 |
[49] | Yan W, Li G, Cui S S, Park G S, Oh R, Chen W X, Cheng X Y, Zhang J M, Li W, Ji L F, Akdim O, Huang X, Lin H, Yang J, Jiang Y X, Sun S G. Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate[J]. J. Am. Chem. Soc., 2023, 145(31): 17220-17231. http://doi.org/10.1021/jacs.3c04320 |
[50] | Huang W J, Kang X L, Xu C, Zhou J H, Deng J, Li Y G, Cheng S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation[J]. Adv. Mater., 2018, 30(11): 1706962. http://doi.org/10.1002/adma.201706962 |
[51] | Liu Y M, Sheng S X, Wu M, Wang S, Wang Y X, Yang H Y, Chen J H, Hao X Y, Zhi C, Wang Y Z, Xie H J. Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol Electrooxidation[J]. ACS Appl. Mater. Interfaces, 2023, 15(3): 3934-3940. http://doi.org/10.1021/acsami.2c17883 |
[52] | Li Q Q, Sun C, Sun X L, Yin Z J, Du Y P, Liu J C, Luo F. Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells[J]. Nano Res., 2024, 17(11): 9525-9531. http://doi.org/10.1007/s12274-024-6933-6 |
[53] | Qin Y N, Huang H, Yu W H, Zhang H N, Li Z J, Wang Z C, Lai J P, Wang L, Feng S H. Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction[J]. Adv. Sci., 2021, 9(5): 2103722. http://doi.org/10.1002/advs.202103722 |
[54] | Gan T J, Wu J P, Liu S, Ou W J, Bin Ling, Kang X W. Low crystallinity and heterostructured AuPt Ru@CNTs as highly efficient multifunctional electrocatalyst[J]. J. Electrochem., 2022, 28(8): 2201241. http://doi.org/10.13208/j.electrochem.220124 |
[55] | Ding Q Q, Zhang Y, Chen X, Fu X Q, Chen D K, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M E, Li J X, Zhang Z, Zhu T, Ritchie R O, Yu Q. Tuning element distribution, structure and properties by composition in high-entropy alloys[J] Nature, 2019, 574(7777): 223-227. http://doi.org/10.1038/s41586-019-1617-1 |
[56] | Yao Y G, Dong Q, Brozena A, Luo J, Miao J W, Chi M F, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang G, Anapolsky A, Hu L. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103. http://doi.org/10.1126/science.abn3103 |
[57] | Wu D, Kusada K, Nanba Y, Koyama M, Yamamoto T, Toriyama T, Matsumura S, Seo O, Gueye I, Kim J, Rosantha Kumara L S, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. Noble-metal high-entropy-alloy nanoparticles: atomic-level insight into the electronic structure[J]. J. Am. Chem. Soc., 2022, 144(8): 3365-3369. http://doi.org/10.1021/jacs.1c13616 |
[58] | Wang Y Y, Zhang Z W, Hu T Y, Yang J, Li Y. High-entropy PtCuSnWNb nanoalloys as efficient and stable catalysts for ethanol oxidation electrocatalysis[J]. Chem. Commun., 2024, 60(30): 4072-4075.http://doi.org/10.1039/d4cc00170b |
[59] |
George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nat. Rev. Mater., 2019, 4(8): 515-534. http://doi.org/10.1038/s41578-019-0121-4
doi: 10.1038/s41578-019-0121-4 URL |
[60] |
Batchelor T A A, Pedersen J K, Winther S H, Castelli I E, Jacobsen K W, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis[J]. Joule, 2019, 3(3): 834-845. http://doi.org/10.1016/j.joule.2018.12.015
doi: 10.1016/j.joule.2018.12.015 URL |
[61] | Lao X Z, Liao X J, Chen C, Wang J S, Yang L S, Li Z, Ma J W, Fu A, Gao H T, Guo P. Pd‐enriched‐core/Pt‐enriched-shell high-entropy alloy with face-centred cubic structure for C1 and C2 alcohol oxidation[J]. Angew. Chem. Int. Ed., 2023, 62(31): e202304510. http://doi.org/10.1002/anie.202304510 |
[62] | Chang J F, Wang G Z, Li C, He Y Q, Zhu Y M, Zhang W, Sajid M, Kara A, Gu M, Yang Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells[J]. Joule, 2023, 7(3): 587-602. http://doi.org/10.1016/j.joule.2023.02.011 |
[63] | Tan X H, Wang C H, Wang J R, Wang P, Xiao Y H, Guo Y Y, Chen J P, He W D, Li Y, Cui H, Wang C X. High-entropy PdRhFeCoMo metallene with high C1 Selectivity and anti‐poisoning ability for ethanol electrooxidation[J]. Adv. Sci., 2024, 11(48): 2409109. http://doi.org/10.1002/advs.202409109 |
[64] |
Peng W, Lu Y R, Lin H, Peng M, Chan T S, Pan A, Tan Y. Sulfur-stabilizing ultrafine high-entropy alloy nanoparticles on MXene for highly efficient ethanol electrooxidation[J]. ACS Nano, 2023, 17(22): 22691-22700. http://doi.org/10.1021/acsnano.3c07110
doi: 10.1021/acsnano.3c07110 URL pmid: 37926947 |
[65] | Chen W, Luo S P, Sun M Z, Wu X Y, Zhou Y S, Liao Y J, Tang M, Fan X K, Huang B L, Quan Z W. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis[J]. Adv. Mater., 2022, 34(43): 2206276. http://doi.org/10.1002/adma.202206276 |
[66] |
Wang A L, He X J, Lu X F, Xu H, Tong Y X, Li G R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation[J]. Angew. Chem. Int. Ed., 2015, 54(12): 3669-3673. http://doi.org/10.1002/anie.201410792
doi: 10.1002/anie.201410792 URL pmid: 25631986 |
[67] | Wang Y, Zheng M, Li Y R, Ye C L, Chen J, Ye J Y, Zhang Q H, Li J, Zhou Z Y, Fu X Z, Wang J, Sun S G, Wang D. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202115735. http://doi.org/10.1002/anie.202115735 |
[68] | Huang W J, Ma X Y, Wang H, Feng R F, Zhou J G, Duchesne P N, Zhang P, Chen F P, Han N, Zhao F, Zhou J H, Cai W B, Li Y. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution[J]. Adv. Mater., 2017, 29(37): 1703057. http://doi.org/10.1002/adma.201703057 |
[69] | Hou X X, Liang C J, Zhao R Y, Wang L W, Chen T, Yang J, Guo X K, Xue N H, Wang T, Peng L M, Zhao X M, Ding W P. Integrated catalyst ZnNC⊂PtZn for high-performance ethanol electrooxidation and DEFC[J]. Angew. Chem. Int. Ed., 2024: e202417406. http://doi.org/10.1002/anie.202417406 |
[70] | Wang L, Wu W, Lei Z, Zeng T, Tan Y Y, Cheng N C, Sun X L. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles[J]. J. Mater. Chem. A, 2020, 8(2): 592-598. http://doi.org/10.1039/c9ta10886f |
[71] |
Chang J F, Wang G Z, Chang X X, Yang Z Z, Wang H, Li B Y, Zhang W, Kovarik L, Du Y, Orlovskaya N, Xu B, Wang G F, Yang Y. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells[J]. Nat. Commun., 2023, 14(1): 1346. http://doi.org/10.1038/s41467-023-37011-z
doi: 10.1038/s41467-023-37011-z URL pmid: 36906649 |
[72] | Ye N, Sheng W C, Zhang R G, Yan B H, Jiang Z, Fang T. Interfacial electron engineering of PdSn‐NbN/C for highly efficient cleavage of the C-C bonds in alkaline ethanol electrooxidation[J]. Small, 2023, 20(3): 2304990. http://doi.org/10.1002/smll.202304990 |
[73] | Lv F, Zhang W Y, Sun M Z, Lin F X, Wu T, Zhou P, Yang W X, Gao P, Huang B L, Guo S J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: amorphous/crystalline interface matters[J]. Adv. Energy Mater., 2021, 11(19): 2100187. http://doi.org/10.1002/aenm.202100187 |
[74] | Wang Y Y, Guo Y G, Zhang Z W, Wu Z R, Maouche C, Shen S Y, Li Y, Zhang J L, Yang J. PtCu-a-SnO2 interface engineering on PtCu-SnO2 aerogels for ethanol oxidation electrocatalysis[J]. Chem. Eng. J., 2024, 499: 156321. http://doi.org/10.1016/j.cej.2024.156321 |
[75] | Liu J F, Luo Z S, Li J S, Yu X T, Llorca J, Nasiou D, Arbiol J, Meyns M, Cabot A. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation[J]. Appl. Catal. B: Environ., 2019, 242: 258-266. http://doi.org/10.1016/j.apcatb.2018.09.105 |
[76] | Ju Q L, Chen T, Xie Q H, Wang M L, Zhao K G, Liu T, Fu L, Wang H Z, Chen Z L, Li C J, Deng Y D. Ultrafine IrMnOx nanocluster decorated amorphous PdS nanowires as efficient electrocatalysts for high C1 selectivity in the alkaline ethanol oxidation reaction[J]. ACS Appl. Mater. Interfaces, 2024, 16(26): 33416-33427. http://doi.org/10.1021/acsami.4c04578 |
[77] | Logeshwaran N, Panneerselvam I R, Ramakrishnan S, Kumar R S, Kim A R, Wang Y, Yoo D J. Quasihexagonal platinum nanodendrites decorated over CoS2‐N‐doped reduced graphene oxide for electro‐oxidation of C1‐, C2‐, and C3‐type alcohols[J]. Adv. Sci., 2022, 9(8): 2105344. http://doi.org/10.1002/advs.202105344 |
[78] | Xing W, Shan Y B, Guo D, Lu T H, Xi S. The inhibition of amphipathic S and N-containing compounds on carbon steel corrosion[J]. J. Electrochem., 1996, 2(1): 24-31. |
[79] | Chang J F, Li K, Wu Z J, Ge J J, Liu C P, Xing W. Sulfur-doped nickel phosphide nanoplates arrays: A monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Appl.Mater. Interfaces, 2018, 10(31): 26303-26311. http://doi.org/10.1021/acsami.8b08068 |
[80] | Huo M T, Liang Y, Liu W, Zhang X Y, Qin K C, Ma Y, Xing Z H, Chang J F, Zhu G S. Synergistically promoting oxygen electrocatalysis through the precise integration of atomically‐dispersed Fe sites and Co nanoparticles[J]. Adv. Energy Mater., 2024: 2405155. http://doi.org/10.1002/aenm.202405155 |
[81] | Chang J F, Wang G Z, Yang Z Z, Li B Y, Wang Q, Kuliiev R, Orlovskaya N, Gu M, Du Y G, Wang G F, Yang Y. Dual-doping and synergism toward high-performance seawater electrolysis[J]. Adv. Mater., 2021, 33(33): 2101425. http://doi.org/10.1002/adma.202101425 |
[82] | Chang J F, Ouyang Y, Ge J J, Wang J L, Liu C P, Xing W. Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(26): 12353-12360. http://doi.org/10.1039/c8ta03951h |
[83] | Jiang R Z, Tran D T, McClure J P, Chu D. A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media[J]. ACS Catal., 2014, 4(8): 2577-2586. http://doi.org/10.1021/cs500462z |
[84] | Chen L, Lu L, Zhu H L, Chen Y G, Huang Y, Li Y D, Wang L Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts[J]. Nat. Commun., 2017, 8(1): 14136. http://doi.org/10.1038/ncomms14136 |
[85] | Yu X T, Liu J F, Li J S, Luo Z S, Zuo Y, Xing C C, Llorca J, Nasiou D, Arbiol J, Pan K, Kleinhanns T, Xie Y, Cabot A. Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation[J]. Nano Energy, 2020, 77: 105116. http://doi.org/10.1016/j.nanoen.2020.105116 |
[86] | Liu J F, Liu H T, Wang Q X, Li T, Yang T T, Zhang W J, Xu H, Li H M, Qi X Q, Wang Y, Cabot A. Phosphorus doped PdMo bimetallene as a superior bifunctional fuel cell electrocatalyst[J]. Chem. Eng. J., 2024, 486: 150258. http://doi.org/10.1016/j.cej.2024.150258 |
[87] | Chen Z X, Jing F, Luo M H, Wu X H, Fu H C, Xiao S W, Yu B B, Chen D, Xiong X, Jin Y Q. Local coordination and electronic interactions of Pd/MXene via dual‐atom codoping with superior durability for efficient electrocatalytic ethanol oxidation[J]. Carbon Energy, 2024, 6(8): e443. http://doi.org/10.1002/cey2.443 |
[88] | Mitchell S, Qin R, Zheng N, Pérez-Ramírez J. Nanoscale engineering of catalytic materials for sustainable technologies[J]. Nat. Nanotech., 2020, 16(2): 129-139. http://doi.org/10.1038/s41565-020-00799-8 |
[89] |
Li L G, Wang P T, Shao Q, Huang X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem. Soc. Rev., 2020, 49(10): 3072-3106. http://doi.org/10.1039/d0cs00013b
doi: 10.1039/d0cs00013b URL pmid: 32309830 |
[90] | Xu B Y, Liu T Y, Liang X C, Dou W J, Geng H B, Yu Z Y, Li Y F, Zhang Y, Shao Q, Fan J M, Huang X. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst[J]. Adv. Mater., 2022, 34(50): 2206528. http://doi.org/10.1002/adma.202206528 |
[91] | Su D M, Lam Z, Wang Y W, Han F, Zhang M M, Liu B, Chen H Y. Ultralong durability of ethanol oxidation reaction via morphological design[J]. Joule, 2023, 7(11): 2568-2582. http://doi.org/10.1016/j.joule.2023.09.008 |
[92] | Li C, Chen X B, Zhang L H, Yan S H, Sharma A, Zhao B, Kumbhar A, Zhou G, Fang J. Synthesis of core@shell Cu‐Ni@Pt‐Cu nano-octahedra and their improved MOR Activity[J]. Angew. Chem. Int. Ed., 2021, 60(14): 7675-7680. http://doi.org/10.1002/anie.202014144 |
[93] | Fu H C, Chen Z X, Chen X H, Jing F, Yu H, Chen D, Yu B B, Hu Y H, Jin Y X. Modification strategies for development of 2D material-based electrocatalysts for alcohol oxidation reaction[J]. Adv. Sci., 2023, 11(37): 2306132. http://doi.org/10.1002/advs.202306132 |
[94] | Huang X, Feng J, Hu S N, Xu B Y, Hao M S, Liu X Z, Wen Y, Su D, Ji Y J, Li Y Y, Li Y S, Huang Y C, Chan T S, Hu Z, Tian N, Shao Q, Huang X. Regioselective epitaxial growth of metallic heterostructures[J]. Nat. Nanotech., 2024, 19(9): 1306-1315. http://doi.org/10.1038/s41565-024-01696-0 |
[95] | Zhou M, Liu J W, Ling C Y, Ge Y Y, Chen B, Tan C L, Fan Z X, Huang J T, Chen J Z, Liu Z Q, Huang Z Q, Ge J J, Cheng H F, Chen Y, Dai L, Yin P F, Zhang X, Yun Q B, Wang J L, Zhang H. Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation[J]. Adv. Mater., 2021, 34(1): 2106115. http://doi.org/10.1002/adma.202106115 |
[96] | Li J, Hu M Y, Liang W Y, Zhang Y F, Tang M H, Wu Z Y, Du Y K. 3D hollow superstructures endow PdAg electrocatalyst with selective ethanol electrooxidation[J]. Chem. Eng. J., 2024, 493: 152536. http://doi.org/10.1016/j.cej.2024.152536 |
[97] | Wang W C, Shi X T, He T N, Zhang Z R, Yang X L, Guo Y J, Chong B, Zhang W M, Jin M. Tailoring amorphous PdCu nanostructures for efficient C-C cleavage in ethanol electrooxidation[J]. Nano Lett., 2022, 22(17): 7028-7033. http://doi.org/10.1021/acs.nanolett.2c01870 |
[98] | Fan D P, Yao H Q, Sun L Z, Lv H, Liu B. 2D PtRhPb mesoporous nanosheets with surface-clean active sites for complete ethanol oxidation electrocatalysis[J]. Adv. Mater., 2024, 36(35): 2407940. http://doi.org/10.1002/adma.202407940 |
[99] | Guo Q Q, Dou J J, Yang X X, Jiang Z T, Wang H, Liu Y M, Xie H J, Li X. Construction of multiphase concave tetrahedral PdInMo nanocatalyst for enhanced alcohol oxidation[J]. Adv. Funct. Mater., 2024, 35(3): 2413937. http://doi.org/10.1002/adfm.202413937 |
[100] | Chang J F, Wang G Z, Wang M Y, Wang Q, Li B Y, Zhou H, Zhu Y M, Zhang W, Omer M, Orlovskaya N, Ma Q, Gu M, Feng Z X, Wang G F, Yang Y. Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment[J]. Nat. Energy, 2021, 6(12): 1144-1153. http://doi.org/10.1038/s41560-021-00940-4 |
[101] | Chen T, Xu S, Zhao T T, Zhou X H, Hu J Q, Xu X, Liang C J, Liu M, Ding W P. Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C-C bond splitting[J]. Angew. Chem. Int. Ed., 2023, 62(38): e202308057. http://doi.org/10.1002/anie.202308057 |
[102] |
Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009, 8(4): 325-330. http://doi.org/10.1038/nmat2359
doi: 10.1038/nmat2359 URL pmid: 19169248 |
[103] |
Zhang J W, Ye J Y, Fan Q Y, Jiang Y T, Zhu Y F, Li H Q, Cao Z M, Kuang Q, Cheng J, Zheng J, Xie Z. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation[J]. J. Am. Chem. Soc., 2018, 140(36): 11232-11240. http://doi.org/10.1021/jacs.8b03080
doi: 10.1021/jacs.8b03080 URL pmid: 30117323 |
[104] |
Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin‐Borkowski R E, Strasser P. The Effect of Surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles[J]. Angew. Chem. Int. Ed., 2017, 56(23): 6533-6538. http://doi.org/10.1002/anie.201702332
doi: 10.1002/anie.201702332 URL pmid: 28455907 |
[105] | Zhu Y M, Bu L Z, Shao Q, Huang X Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C-C bond cleavage for ethanol oxidation electrocatalysis[J]. ACS Catal., 2019, 9(8): 6607-6612. http://doi.org/10.1021/acscatal.9b01375 |
[106] | Kim K-H, Hobold G M, Steinberg K J, Gallant B M. Confinement effects of hollow structured Pt-Rh electrocatalysts toward complete ethanol electrooxidation[J]. ACS Nano, 2023, 17(14): 14176-14188. http://doi.org/10.1021/acsnano.3c05334 |
[107] | Liu H M, Li J H, Wang L J, Tang Y W, Xia B Y, Chen Y. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation[J]. Nano Res., 2017, 10(10): 3324-3332. http://doi.org/10.1007/s12274-017-1545-z |
[108] | Han S H, Liu H M, Chen P, Jiang J X, Chen Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Adv. Energy Mater., 2018, 8(24): 1801326. http://doi.org/10.1002/aenm.201801326 |
[109] |
Liu D, Zhu Z J, Li J, Chen L W, Huang H Z, Jing X T, Yin A X. Rh-Cu alloy nano-dendrites with enhanced electrocatalytic ethanol oxidation activity[J]. J. Energy Chem., 2023, 82: 343-349. http://doi.org/10.1016/j.jechem.2023.03.038
doi: 10.1016/j.jechem.2023.03.038 URL |
[110] | Miao B Q, Sun B, Wang T J, Shi F, Chen P, Jin P J, Li D S, Li F M, Chen Y. Efficient promotion of ethanol complete electrooxidation by anti-poisoning rhodium-bismuth alloy nanodendrites[J]. Appl. Catal. B: Environ., 2023, 337: 122967. http://doi.org/10.1016/j.apcatb.2023.122967 |
[111] | Liu Y, Lan B, Yang Y Y. Boosting ethanol electrooxidation at RhBi alloy and Bi2O3 composite surfaces in alkaline media[J]. J. Mater. Chem. A, 2022, 10(39): 20946-20952. http://doi.org/10.1039/d2ta06062k |
[112] |
Zhang Z Q, Liu J P, Wang J, Wang Q, Wang Y H, Wang K, Wang Z, Gu M, Tang Z H, Lim J, Zhao T S, Ciucci F. Single-atom catalyst for high-performance methanol oxidation[J]. Nat. Commun., 2021, 12(1): 5235. http://doi.org/10.1038/s41467-021-25562-y
doi: 10.1038/s41467-021-25562-y URL pmid: 34475400 |
[113] | Tang J X, Tian N, Zhou Z Y, Sun S G. Shape-controlled synthesis of Pd and PdPt alloy nanostructures by electrodeposition for electrocatalytic ethanol oxidation[J]. ACS Appl. Nano Mater., 2025, 8(2): 1225-1232. http://doi.org/10.1021/acsanm.4c06207 |
[114] | Tang M, Sun M Z, Chen W, Ding Y T, Fan X K, Wu X Y, Fu X Z, Huang B L, Luo S P, Luo J L. Atomic diffusion engineered PtSnCu nanoframes with high‐index facets boost ethanol oxidation[J]. Adv. Mater., 2024, 36(21): 2311731. http://doi.org/10.1002/adma.202311731 |
[115] | Zhang G L, Hui C Y, Yang Z Z, Wang Q, Cheng S, Zhang D, Cui P, Shui J L. Hydrogen-induced p-d orbital hybridization and tensile strain of PdGa single-atom alloy metallene boosts complete electrooxidation of ethanol[J]. Appl. Catal. B: Environ., 2024, 342: 123377. http://doi.org/10.1016/j.apcatb.2023.123377 |
[116] | Luo S P, Zhang L, Liao Y, Li L X, Yang Q, Wu X T, Wu X Y, He D S, He C Y, Chen W, Wu Q L, Li M R, Hensen E J M, Quan Z. A Tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation[J]. Adv. Mater., 2021, 33(17): 2008508. http://doi.org/10.1002/adma.202008508 |
[117] | Sun B, Zhong W, Ai X, Zhang C, Li F M, Chen Y. Engineering low-coordination atoms on RhPt bimetallene for 12-electron ethanol electrooxidation[J]. Energy Environ. Sci., 2024, 17(6): 2219-2227. http://doi.org/10.1039/d3ee04023b |
[118] | Li F M, Xia C, Fang W, Chen Y, Xia B Y. RhCuBi trimetallenes with composition segregation coupled crystalline-amorphous heterostructure toward ethanol electrooxidation[J]. Adv. Energy Mater., 2024, 14(21): 2400112. http://doi.org/10.1002/aenm.202400112 |
[119] | Chang Q W, Hong Y M, Lee H J, Lee, J H, Ologunagba D, Liang Z X, Kim J, Kim M J, Hong J W, Song L, Kattel S, Chen Z, Chen J G, Choi S I. Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes[J] Proc. Natl. Acad. Sci. USA, 2022, 119 (11): e2112109119. https://www.pnas.org/doi/10.1073/pnas.2112109119 |
[120] | Bai S X, Xu Y, Cao K L, Huang X Q. Selective ethanol oxidation reaction at the Rh-SnO2 interface[J]. Adv. Mater., 2020, 33(5): 2005767. http://doi.org/10.1002/adma.202005767 |
[121] | Li L, Chu M Y, Song R R, Liu S H, Ren G M, Xu Y, Wang L, Xu Q F, Shao Q, Lu J M, Huang X Q. CO spillover on ultrathin bimetallic Rh/Rh-M nanosheets[J]. Chem Catal., 2022, 2(7): 1709-1719. http://doi.org/10.1016/j.checat.2022.04.013 |
[1] | 陈明星, 刘念, 杜子翯, 齐静, 曹睿. 离子液体增强质子转移并促进中性析氧反应[J]. 电化学(中英文), 2025, 31(7): 2515001-. |
[2] | 华炎波, 倪宝鑫, 蒋昆. 固态电解质反应器驱动的大气环境CO2捕集与电催化转化[J]. 电化学(中英文), 2025, 31(6): 2504082-. |
[3] | 张辰浩, 胡晗宇, 杨竣皓, 张倩, 杨畅, 王得丽. Pt2NiCo金属间化合物的有序度调控及电催化氧还原反应性能研究[J]. 电化学(中英文), 2025, 31(4): 2411281-. |
[4] | 林森, 张浪, 侯童, 丁俊阳, 彭紫默, 刘亦帆, 刘熙俊. Fe3C纳米晶体电催化一氧化氮还原合成氨[J]. 电化学(中英文), 2025, 31(4): 2412171-. |
[5] | Muhammad Abdul Qadeer, Iqra Fareed, Asif Hussain, Muhammad Asim Farid, Sadia Nazir, Faheem K. Butt, 邹吉军, Muhammad Tahir, Shangfeng Du. 用于光催化和电化学应用的纳米结构石墨氮化碳[J]. 电化学(中英文), 2025, 31(1): 2416001-. |
[6] | 何佩佩, 师锦华, 李笑语, 刘明杰, 方舟, 和晶, 李中坚, 彭新生, 和庆钢. 碳纳米管穿插钴基卟啉金属有机框架催化ORR[J]. 电化学(中英文), 2025, 31(1): 2405241-. |
[7] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[8] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[9] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[10] | 罗贤准, 陈晓虎, 李永新. 纳米电极上单纳米气泡的伏安分析和电催化[J]. 电化学(中英文), 2024, 30(10): 2414001-. |
[11] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[12] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[13] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[14] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[15] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||