[1] |
Degen F, Winter M, Bendig D, Tübke J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells[J]. Nat. Energy, 2023, 8(11): 1284-1295.
|
[2] |
Zhao L, Hu Y S, Li H, Wang Z X, Xu H X, Huang X J, Chen L Q. Applications of Raman spectroscopy technique in lithium ion batteries[J]. J. Electrochem., 2011, 17(1): 12-23.
|
[3] |
Ren B, Li J F, Huang Y F, Zeng Z C, Tian Z Q. Electrochemical surface-enhanced Raman spectroscopy—current status and perspective[J]. J. Electrochem., 2010, 16(3): 305-316.
|
[4] |
Li W J, Zheng J Y, Gu L, Li H. Researches on in-situ and ex-situ characterization techniques in lithium batteries[J]. J. Electrochem., 2015, 21(2): 99-114.
|
[5] |
Li H R, Wang W. Recent advances of in situ and in operando optical imaging techniques for battery researches[J]. Curr. Opin. Electrochem., 2023, 41: 101376.
|
[6] |
Elgrishi N, Rountree K J, McCarthy B D, Rountree E S, Eisenhart T T, Dempsey J L. A practical beginner’s guide to cyclic voltammetry[J]. J. Chem. Educ., 2018, 95(2): 197-206.
|
[7] |
Liu H N, Naqvi I H, Li F J, Liu C L, Shafiei N, Li Y L, Pecht M. An analytical model for the CC-CV charge of Li-ion batteries with application to degradation analysis[J]. J. Energy Storage, 2020, 29: 101342.
|
[8] |
Wang J, Huang Q A, Li W H, Wang J, Zhuang Q C, Zhang J J. Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy[J]. J. Electrochem., 2020, 26(5): 607-627.
doi: 10.13208/j.electrochem.200641
|
[9] |
Kaim W, Fiedler J. Spectroelectrochemistry: the best of two worlds[J]. Chem. Soc. Rev., 2009, 38(12): 3373-3382.
doi: 10.1039/b504286k
pmid: 20449056
|
[10] |
Lozeman J J A, Führer P, Olthuis W, Odijk M. Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques[J]. Analyst, 2020, 145(7): 2482-2509.
doi: 10.1039/c9an02105a
pmid: 31998878
|
[11] |
Zhang D Z, Wang R C, Wang X H, Gogotsi Y. In situ monitoring redox processes in energy storage using UV-Vis spectroscopy[J]. Nat. Energy, 2023, 8(6): 567-576.
|
[12] |
Edwards P, Zhang C J, Zhang B G, Hong X Q, Nagarajan V K, Yu B, Liu Z W. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin[J]. Sci. Rep., 2017, 7(1): 12224.
doi: 10.1038/s41598-017-12482-5
pmid: 28939898
|
[13] |
Liu H F, Guo B G, Wang L, Xie R S, Yang J C, Li J, Zhang X Q, Zheng K, Huo J C. Adjusting the photoconductive properties of LaCoO3 thin films by epitaxial strain[J]. Opt. Mater., 2021, 121: 111537.
|
[14] |
Pandya R, Valzania L, Dorchies F, Xia F, Mc Hugh J, Mathieson A, Tan H J, Parton T G, Godeffroy L, Mazloomian K, Miller T S, Kanoufi F, Volder M D, Tarascon J, Gigan S, Aguiar H B, Grimaud A. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries[J]. Nat. Nanotechnol., 2023, 18(10): 1185-1194.
|
[15] |
Liu Y S, Sun Q, Yang X F, Liang J N, Wang B Q, Koo A, Li R Y, Li J, Sun X L. High-performance and recyclable Al-air coin cells based on eco-friendly chitosan hydrogel membranes[J]. ACS Appl. Mater. Interfaces, 2018, 10(23): 19730-19738.
|
[16] |
Xu C J, Dai Q, Gaines L, Hu M M, Tukker A, Steubing B. Future material demand for automotive lithium-based batteries[J]. Commun. Mater., 2020, 1(1): 99.
|
[17] |
Barbosa J C, Gonçalves R, Costa C M, Lanceros-Méndez S. Toward sustainable solid polymer electrolytes for lithium-ion batteries[J]. ACS Omega, 2022, 7(17): 14457-14464.
doi: 10.1021/acsomega.2c01926
pmid: 35572743
|
[18] |
Zhang J N, Li Q H, Ouyang C Y, Yu X Q, Ge M Y, Huang X J, Hu E Y, Ma C, Li S F, Xiao R J, Yang W L, Chu Y, Liu Y J, Yu H G, Yang X Q, Huang X J, Chen L Q, Li H. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nat. Energy, 2019, 4(7): 594-603.
|
[19] |
Wang J Y, Wang R, Wang S Q, Wang Y F, Zhan C. Facile one-step solid-state synthesis of Ni-rich layered oxide cathodes for lithium-ion batteries[J]. J. Electrochem., 2022, 28(8): 2112131.
|
[20] |
Wei X F, Guan Y B, Zheng X H, Zhu Q Z, Shen J R, Qiao N, Zhou S Q, Xu B. Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J]. Appl. Surf. Sci., 2018, 440: 748-754.
|
[21] |
Wang W. Imaging the chemical activity of single nanoparticles with optical microscopy[J]. Chem. Soc. Rev., 2018, 47(7): 2485-2508.
doi: 10.1039/c7cs00451f
pmid: 29542749
|
[22] |
Lu J H, Xiong R, Tian J P, Wang C X, Sun F C. Deep learning to estimate lithium-ion battery state of health without additional degradation experiments[J]. Nat. Commun., 2023, 14(1): 2760.
doi: 10.1038/s41467-023-38458-w
pmid: 37179411
|
[23] |
Zhang Y, Alarco J A, Best A S, Snook G A, Talbot P C, Nerkar J Y. Re-evaluation of experimental measurements for the validation of electronic band structure calculations for LiFePO4 and FePO4[J]. RSC Adv., 2019, 9(2): 1134-1146.
doi: 10.1039/c8ra09154d
|