[1] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a
URL
|
[2] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
doi: 10.1038/35104644
URL
|
[3] |
Hess M, Novak P. Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries[J]. Electrochim. Acta, 2013, 106: 149-158.
doi: 10.1016/j.electacta.2013.05.056
URL
|
[4] |
Dufour N, Chandesris M, Genies S, Cugnet M, Bultel Y. Lithiation heterogeneities of graphite according to C-rate and mass-loading: A model study[J]. Electrochim. Acta, 2018, 272: 97-107.
doi: 10.1016/j.electacta.2018.03.196
URL
|
[5] |
Reynier Y, Yazami R, Fultz B. XRD evidence of macroscopic composition inhomogeneities in the graphite-lithium electrode[J]. J. Power Sources, 2007, 165(2): 616-619.
doi: 10.1016/j.jpowsour.2006.10.023
URL
|
[6] |
Harris S J, Lu P. Effects of inhomogeneities-nanoscale to mesoscale-on the durability of Li-ion batteries[J]. J. Phys. Chem. C, 2013, 117(13): 6481-6492.
doi: 10.1021/jp311431z
URL
|
[7] |
Radvanyi E, Porcher W, De Vito E, Montani A, Franger S, Larbi S J S. Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model[J]. Phys. Chem. Chem. Phys., 2014, 16(32): 17142-17153.
doi: 10.1039/c4cp02324b
pmid: 25010355
|
[8] |
Migge S, Sandmann G, Rahner D, Dietz H, Plieth W. Studying lithium intercalation into graphite particles via in situ Raman spectroscopy and confocal microscopy[J]. J. Solid State Electr., 2005, 9(3): 132-137.
doi: 10.1007/s10008-004-0563-4
URL
|
[9] |
Guo Z S, Ji L, Chen L. Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of differ-ent size and shape[J]. J. Mater Sci., 2017, 52(23): 13606-13625.
doi: 10.1007/s10853-017-1455-1
URL
|
[10] |
Harris S J, Timmons A, Baker D R, Monroe C. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chem. Phys. Lett., 2010, 485(4-6): 265-274.
doi: 10.1016/j.cplett.2009.12.033
URL
|
[11] |
Thomas-Alyea K E, Jung C, Smith R B, Bazant M Z. In situ observation and mathematical modeling of lithium distribution within graphite[J]. J. Electrochem. Soc., 2017, 164(11): E3063-E3072.
|
[12] |
Hao F, Fang D N. Reducing diffusion-induced stresses of electrode-collector bilayer in lithium-ion battery by pre-strain[J]. J. Power Sources, 2013, 242: 415-420.
doi: 10.1016/j.jpowsour.2013.05.098
URL
|
[13] |
Song Y C, Lu B, Ji X, Zhang J Q. Diffusion induced stresses in cylindrical lithium-ion batteries: Analytical solutions and design insights[J]. J. Electrochem. Soc., 2012, 159(12): A2060-A2068.
|
[14] |
Zamarayeva A M, Ostfeld A E, Wang M, Duey J K, Deckman I, Lechene B P, Davies G, Steingart D A, Arias A C. Flexible and stretchable power sources for wearable electronics[J]. Sci. Adv., 2017, 3(6): e1602051.
doi: 10.1126/sciadv.1602051
URL
|
[15] |
Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M. Camouflage and display for soft Machines[J]. Science, 2012, 337(6096): 828-832.
doi: 10.1126/science.1222149
URL
|
[16] |
Jang K I, Chung H U, Xu S, Lee C H, Luan H W, Jeong J, Cheng H Y, Kim G T, Han S Y, Lee J W, Kim J, Cho M, Miao F X, Yang Y Y, Jung H N, Flavin M, Liu H, Kong G W, Yu K J, Rhee S I, Chung J, Kim B, Kwak J W, Yun M H, Kim J Y, Song Y M, Paik U, Zhang Y H, Huang Y G, Rogers J A. Soft network composite materials with deterministic and bio-inspired designs[J]. Nat. Commun., 2015, 6: 6566.
doi: 10.1038/ncomms7566
URL
|
[17] |
Dagdeviren C, Yang B D, Su Y W, Tran P L, Joe P, Anderson E, Xia J, Doraiswamy V, Dehdashti B, Feng X, Lu B W, Poston R, Khalpey Z, Ghaffari R, Huang Y G, Slepian M J, Rogers J A. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(5): 1927-1932.
doi: 10.1073/pnas.1317233111
URL
|
[18] |
Zhang Y, Bai W Y, Cheng X L, Ren J, Weng W, Chen P N, Fang X, Zhang Z T, Peng H S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs[J]. Angew. Chem. Int. Ed., 2014, 53(52): 14564-14568.
doi: 10.1002/anie.201409366
pmid: 25358468
|
[19] |
Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y W, Su J, Zhang H G, Cheng H Y, Lu B W, Yu C J, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y G, Paik U, Rogers J A. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nat. Commun., 2013, 4: 1543.
doi: 10.1038/ncomms2553
URL
|
[20] |
Liu W, Chen J, Chen Z, Liu K, Zhou G M, Sun Y M, Song M S, Bao Z N, Cui Y. Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator[J]. Adv. Energy Mater., 2017, 7(21): 1701076.
doi: 10.1002/aenm.201701076
URL
|
[21] |
Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications[M]. New York: John Wiley & Sons, 2001, 1364-1365.
|
[22] |
Gerver R E, Meyers J P. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations[J]. J. Electrochem. Soc., 2011, 158(7): A835-A843.
|
[23] |
Kumaresan K, Sikha G, White R E. Thermal model for a Li-ion cell-modeling graphite data[J]. J. Electrochem. Soc., 2008, 155(2): A164-A171.
|
[24] |
Kasavajjula U S, Wang C S, Arce P E. Discharge model for LiFePO4 accounting for the solid solution range[J]. J. Electrochem. Soc., 2008, 155(11): A866-A874.
|