电化学(中英文) ›› 2023, Vol. 29 ›› Issue (6): 2218002. doi: 10.13208/j.electrochem.2218002
所属专题: “电分析”专题文章
收稿日期:
2022-10-31
修回日期:
2023-01-05
接受日期:
2023-05-17
出版日期:
2023-06-28
发布日期:
2023-05-24
Tao Chena, Yuan-Hong Xua,*(), Jing-Hong Lib,*()
Received:
2022-10-31
Revised:
2023-01-05
Accepted:
2023-05-17
Published:
2023-06-28
Online:
2023-05-24
Contact:
*Tel: (86-532)85956199, E-mail: 摘要:
几千年来,致病菌对人类健康构成了巨大威胁。实现致病菌的实时监测可有效阻止致病菌的传播,从而降低对人类健康的威胁。迄今为止,已有电化学、光学、压电和量热等多种技术用于细菌的检测。其中,基于电化学阻抗技术的传感器由于其成本低、读取时间短、重现性好、设备便携等优点,在实时细菌检测中展现出了巨大的应用潜力。本文主要综述了近三年来电化学阻抗技术在细菌传感中的典型应用。众所周知,电极材料在基于电化学阻抗的传感器的构建中发挥着极其重要的作用,因为细菌生物识别元件的固定化,以及所制备的传感器的灵敏度、经济性和便携性都主要取决于电极材料。因此,为了向新入行的研究人员提供基于不同电极材料制备电化学阻抗传感器清晰的制备过程,我们尝试根据不同的电极平台对基于电化学阻抗技术的传感器进行分类。此外,还讨论了目前的难点、未来的应用方向和前景。我们希望通过本文的综述,能够为刚进入该领域的研究人员开展基于电化学阻抗技术,制备快速、灵敏、准确地检测多种致病菌的传感器研究提供指导。
陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002.
Tao Chen, Yuan-Hong Xu, Jing-Hong Li. Recent Advances in Electrochemical Impedance Spectroscopy-Based Pathogenic Bacteria Sensing[J]. Journal of Electrochemistry, 2023, 29(6): 2218002.
Electrode | Analyte | Linear range | LOD | Ref. |
---|---|---|---|---|
GCE | E. coli | 103 to 107 CFU/mL | 500 CFU/mL | [ |
Gold modified GCE | E. coli | 10 to 105 CFU/mL | 14 CFU/mL | [ |
AuNP modified GCE | S. aureus | 10 to 107 CFU/mL | 3.3 CFU/mL | [ |
Dual-aptamer-based sandwich GCE | S. aureus | 1 × 101 to 1 × 105 CFU/mL | 2 CFU/mL | [ |
Gold nanorods modified GCE | S. aureus | 1.8 × 103 to 1.8 × 107 CFU/mL | 2.4 × 102 CFU mL | [ |
3-Thiopheneethanol modified GCE | S. aureus | 10 to 107 CFU/mL | 4 CFU/mL | [ |
Synthetic receptor-transducing platform coupling | E. coli | 1000 CFU/mL | 120 CFU/mL | [ |
GCE | Acinetobacter baumannii | 10-1 to 104 CFU/mL | 0.030 CFU/mL | [ |
Gold electrodes | E. coli; L. innocua; S. aureus; S. Typhimurium | 1.5 to 1.5 × 103; 1.5 to 1.5 × 104; 1.5 to 1.5 × 105; 15 to 1.5 × 104 CFU/mL | 1.5; 1.5; 1.5; 15 CFU/mL | [ |
Gold electrode | S. typhimurium and E. coli | N/A | 6.859 × 1023 L·mol-1 and 2.054 × 1017 L·mol-1 | [ |
Screen-printed gold electrode | Salmonella spp. | 15 to 2.57 × 107 CFU/mL | 5 CFU/mL | [ |
3D gold nano-/microislands and graphene electrodes | E. coli, P. putida, and S. epidermidis | 2 × 10 to 2 × 105, 2 × 10 to 2 × 104, and 1 × 102 to 1× 105 CFU/mL | 20 CFU/mL | [ |
Gold disk electrode | Salmonella | 2 × 10 to 2 × 106/ 2 × 102 to 2 × 105 | 17 CFU/mL;1.3 × 102 CFU/mL;1 CFU/mL | [ |
Lipid membrane modified gold electrode | E. coli DNA | 10-9 to 10-19 mol·L-1 | 10-19 mol·L-1 | [ |
Ag electrodes | E. coli and Pseudomonas aeruginosa | Up to 500 CFU/mL | 500 - 1000 CFU/mL | [ |
Graphenic carbon electrodes | E. coli and S. aureus | 2 to 20 CFU/mL | 2 CFU/mL | [ |
Reduced graphene oxide-carbon electrode | S. mutans, A. viscosus, and L. fermentum | N/A | N/A | [ |
Boron-doped carbon nanowalls electrodes | Pseudomonas syringae pv. lachrymans | 3.25 × 100 to 3.25 × 108 CFU/mL | 119 CFU/mL | [ |
Carbon nanotube-based electrode | S. aureus | 102 to 107 CFU/mL | 1.23 × 102 CFU/mL; 1.29 × 102 CFU/mL | [ |
SPE | E. coli | 102 to 108 CFU/mL | 10 CFU/mL | [ |
SPE | E. coli DNA | 1 × 10−10 μmol·L-1 to 1 × 10−5 μmol·L-1 | 1.95 × 10−15 μmol·L-1 | [ |
Screen-printed carbon electrodes | S. aureus | 10 to 108 CFU/mL | 3 CFU/mL | [ |
Screen printed gold electrodes | S. aureus | 10 × 101 to 10 × 107 CFU/mL | 101.58 CFU/mL | [ |
GlycoMXene screen printed electrodes | E. coli | 101 to 108 CFU/mL | 10 CFU/mL | [ |
ITO coated polyethylene terephthalate (ITO:PET) | Pseudomonas aeruginosa | N/A | N/A | [ |
Fluorine doped tin oxide electrode | Salmonella gallinarum, and Salmonella pullorum | (1 to 1 × 105 cells) with 37 and 25 viable cells | 51 and 37 cells, respectively in faecal samples and 218 and 173 cells, respectively in meat samples. | [ |
Anti-E. coliO157:H7 antibody-modified CPE | E. coli | 1 × 10-1 to 1 × 106 CFU/mL | 0.1 CFU/mL | [ |
Polyaniline nanofibers modified filter paper substrate | S. aureus, E. coli, P. aeruginosa | N/A | N/A | [ |
Unknow | Gram-negative and gram-positive bacteria | 3.0 CFU/mL and 3.1 CFU/mL | [ | |
Interdigitated microelectrode | Salmonella Typhimurium | 102 to 106 CFU/mL | 80 CFU/mL | [ |
Single-crystalline gold interdigitated microelectrode | Listeria monocytogenes | 1.0 to 1.0 × 104 CFU/mL | 7.1 and 9.2 CFU/mL in water and milk | [ |
Interdigitated electrode | E. coli | 25 to 1000 CFU/mL | 9 CFU/mL | [ |
Gold integrated electrode | Aeromonas salmonicida | 1 to 107 CFU/mL | 1 CFU/mL | [ |
Interdigitated microelectrode | Salmonella typhimurium | 1.6 × 102 to 1.6 × 106 CFU/mL | 73 CFU/mL | [ |
Interdigitated microelectrode | Salmonella | 3.0 × 101 to 3.0 × 106 CFU/mL | 19 CFU/mL | [ |
Interdigitated microelectrode | Salmonella | 101 to 106 CFU/mL | 10 CFU/mL | [ |
Interdigitated electrodes | Pseudomonas aeruginosa and S. aureus | N/A | 1.5 × 108 CFU/mL and 1.5·× 105 CFU/mL | [ |
Interdigitated gold electrodes | E. coli | 102 to 106 CFU/mL | 100 CFU/mL | [ |
Au-decorated NiO nanowall electrodes | Mycoplasma agalactia DNA | N/A | 53 ± 2 copy number/μL | [ |
Gold interdigitated electrodes | Salmonella, Legionella, and E. coli | N/A | 3 bacterial cells/mL | [ |
Parallel-plate electrode | Bacillus thuringiensis | N/A | N/A | [ |
Gold nanoparticle-modified screen-printed carbon electrode | E. coli | N/A | N/A | [ |
Nanogap electrode | E. coli O157:H7 | N/A | 1 cell of E. coli | [ |
Screen-printed carbon electrode | Salmonella typhimurium | 10 to 107 CFU/mL | 10 CFU/mL | [ |
Alumina and Ag/Pd paste | P. aeruginosa and S. aureus | N/A | N/A | [ |
Interdigitated microelectrodes | E. coli | N/A | N/A | [ |
Gold electrode | S. enteritidis and BL21 | N/A | 1.0 × 103 cells/mL; 1.0 × 106 cells/mL | [ |
Gold-plated wire electrode | L. monocytogenes | 103 to 108 CFU/ml | 1.4 × 103 CFU/mL | [ |
Thermoplastic electrodes | E.coli | 8.6 to 8.6×107 CFU/mL | 27 CFU/mL | [ |
GCE | Streptococcus Pneumoniae | N/A | 622 cells/mL | [ |
Gold electrode | Enterococcus faecalis,Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida tropicalis | 101 to 105 CFU/mL | 10 CFU/mL | [ |
Au NPs modified carbon SPE | E. coli | 10 to 106 CFU/mL | 15 CFU/mL | [ |
MXene/polypyrrol based GCE | Salmonella | 103 to 107 CFU/mL | 23 CFU/mL | [ |
SPE | E. coli | 102 to 106 CFU/mL | 36 CFU/mL | [ |
Interdigitated electrodes | E. coli, Klebsiella pneumoniae and S. aureus | N/A | N/A | [ |
Cationic covalent organic polymer based interdigitated electrode arrays | E. coli | 30 to 1010 CFU/mL | 2 CFU/mL | [ |
Interdigitated electrodes | E.coli | N/A | N/A | [ |
[1] |
Li D X, Chen T, Zhang Y F, Xu Y H, Niu H T. Synergistical starvation and chemo-dynamic therapy for combating multidrug-resistant bacteria and accelerating diabetic wound healing[J]. Adv. Healthc. Mater., 2021, 10(18): 2100716.
doi: 10.1002/adhm.v10.18 URL |
[2] |
Li A H, Zhang M, Ma W S, Li D X, Xu Y H. Sugar-disguised bullets for combating multidrug-resistant bacteria infections based on an oxygen vacancy-engineered glucose-functionalized MoO3-x photo-coordinated bienzyme[J]. Chem. Eng. J., 2022, 431: 133943.
doi: 10.1016/j.cej.2021.133943 URL |
[3] |
Guo L, Hu Y C, Lei Y, Wu H, Yang G Z, Wang Y, Wei G. Vitrification of petrochemical sludge for rapid, facile, and sustainable fixation of heavy metals[J]. J. Environ. Chem. Eng., 2022, 10(6): 108812.
doi: 10.1016/j.jece.2022.108812 URL |
[4] |
Liu Z Z, Liu Z X, Zhao Z, Li D X, Zhang P F, Zhang Y F, Liu X Y, Ding X T, Xu Y H. Photothermal regulated nanozyme of CuFeS2 nanoparticles for efficiently promoting wound healing infected by multidrug resistant bacteria[J]. Nanomaterials, 2022, 12(14): 2469.
doi: 10.3390/nano12142469 URL |
[5] |
Zhao Z, Zhang H, Chen H D, Xu Y H, Ma L N, Wang Z X. An efficient photothermal-chemotherapy platform based on a polyacrylamide/phytic acid/polydopamine hydrogel[J]. J. Mater. Chem. B, 2022, 10(21): 4012-4019.
doi: 10.1039/d2tb00677d pmid: 35506396 |
[6] | Zielinski B, Plichta A, Misztal K, Spurek P, Brzychczy-Wloch M, Ochonska D. Deep learning approach to bacterial colony classification[J]. Plos One, 2017, 12(9): e0184554. |
[7] |
Song F G, Shen Y Y, Wei Y D, Yang C R, Ge X L, Wang A M, Li C Y, Wan Y, Li J H. Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics[J]. Biosens. Bioelectron., 2021, 176: 112953.
doi: 10.1016/j.bios.2020.112953 URL |
[8] |
Castle L M, Schuh D A, Reynolds E E, Furst A L. Electrochemical sensors to detect bacterial foodborne pathogens[J]. ACS Sensors, 2021, 6(5): 1717-1730.
doi: 10.1021/acssensors.1c00481 pmid: 33955227 |
[9] |
Furst A L, Francis M B. Impedance-based detection of bacteria[J]. Chem. Rev., 2019, 119(1): 700-726.
doi: 10.1021/acs.chemrev.8b00381 pmid: 30557008 |
[10] |
Wang M, Zeng J, Wang J Q, Wang X, Wang Y, Gan N. Dual-mode aptasensor for simultaneous detection of multiple food-borne pathogenic bacteria based on colorimetry and microfluidic chip using stir bar sorptive extraction[J]. Microchim. Acta, 2021, 188(8): 244.
doi: 10.1007/s00604-021-04902-1 |
[11] |
Song F G, Wei Y D, Wang P, Ge X L, Li C Y, Wang A M, Yang Z Q, Wan Y, Li J H. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform[J]. Biosens. Bioelectron., 2021, 185: 113262.
doi: 10.1016/j.bios.2021.113262 URL |
[12] |
Huang J M, Zhong Y J, Li W X, Wang W X, Li C Y, Wang A M, Yan H, Wan Y, Li J H. Fluorescent and opt-electric recording bacterial identification device for ultrasensitive and specific detection of microbials[J]. ACS Sensors, 2021, 6(2): 443-449.
doi: 10.1021/acssensors.0c02007 pmid: 33369433 |
[13] |
Song F G, Deng R J, Liu H, Wang A M, Ma C X, Wei Y D, Cui X J, Wan Y, Li J H. Trypsin-amplified aerolysin nanopore amplified sandwich assay for attomolar nucleic acid and single bacteria detection[J]. Anal. Chem., 2019, 91(21): 14043-14048.
doi: 10.1021/acs.analchem.9b03717 pmid: 31577421 |
[14] |
Wu S J, Duan N, Qiu Y T, Li J H, Wang Z P. Colorimetric aptasensor for the detection of salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics[J]. Int. J. Food Microbiol., 2017, 261: 42-48.
doi: 10.1016/j.ijfoodmicro.2017.09.002 URL |
[15] |
Kumar R, Surendran P K, Thampuran N. Evaluation of culture, ELISA and PCR assays for the detection of salmonella in seafood[J]. Lett. Appl. Microbiol., 2008, 46(2): 221-226.
pmid: 18028326 |
[16] |
Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón J M. New challenges in point of care electrochemical detection of clinical biomarkers[J]. Sens. Actuator B-Chem., 2021, 345: 130349.
doi: 10.1016/j.snb.2021.130349 URL |
[17] |
Hui Y, Huang Z, Alahi M E E, Nag A, Feng S, Mukhopadhyay S C. Recent advancements in electrochemical biosensors for monitoring the water quality[J]. Biosensors, 2022, 12(7): 551.
doi: 10.3390/bios12070551 URL |
[18] |
Cady P, Hardy D, Martins S, Dufour S W, Kraeger S J. Automated impedance measurements for rapid screening of milk microbial content[J]. J. Food Prot., 1978, 41(4): 277-283.
doi: 10.4315/0362-028X-41.4.277 URL |
[19] |
Dheilly A, Linossier I, Darchen A, Hadjiev D, Corbel C, Alonso V. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry[J]. Appl. Microbiol. Biotechnol., 2008, 79(1): 157-164.
doi: 10.1007/s00253-008-1404-7 pmid: 18330564 |
[20] | Bigdeli I K, Yeganeh M, Shoushtari M T, Zadeh M K. Chapter 23 - electrochemical impedance spectroscopy (EIS) for biosensing[M]. Micro and Nano Technologies, 2021: 533-554. |
[21] |
Andrews G, Neveling O, De Beer D J, Chirwa E M N, Brink H G, Joubert T H. Non-destructive impedance monitoring of bacterial metabolic activity towards continuous lead biorecovery[J]. Sensors, 2022, 22(18): 7045.
doi: 10.3390/s22187045 URL |
[22] |
Li X, Huang Q A, Li W H, Bai Y X, Wang J, Liu Y, Zhao Y F, Wang J, Zhang J J. Fundamentals of electrochemical impedance spectroscopy for macrohomogeneous porous electrodes[J]. J. Electrochem., 2021, 27(5): 467-497.
doi: 10.13208/j.electrochem.201126 URL |
[23] | Muñoz J, Montes R, Baeza M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing[J]. Trac-Trend Aanl. Chem., 2017, 97: 201-215. |
[24] |
Kowalski M, Brodowski M, Dziabowska K, Skwarecka M, Ficek M, Nidzworski D, Bogdanowicz R. Electrochemical detection of plant pathogens using boron-doped carbon nanowalls immunosensor[J]. IEEE Sens. J., 2022, 22(8): 7562-7571.
doi: 10.1109/JSEN.2022.3157037 URL |
[25] |
Svalova T S, Medvedeva M V, Saigushkina A A, Kozitsin I V, Malysheva N N, Zhdanovskikh V O, Okhokhonin A V, Kozitsina A N. A label-free impedimetric immunosensor based on covalent immobilization of anti-e. Coli antibody via a copper-catalyzed azide-alkyne cycloaddition reaction[J]. Anal. Bioanal. Chem., 2020, 412(21): 5077-5087.
doi: 10.1007/s00216-019-02381-1 |
[26] |
Wang S H, Zhu X L, Meng Q Y, Zheng P M, Zhang J, He Z W, Jiang H Y. Gold interdigitated micro-immunosensor based on mn-mof-74 for the detection of listeria monocytogens[J]. Biosens. Bioelectron., 2021, 183: 113186.
doi: 10.1016/j.bios.2021.113186 URL |
[27] |
Messaoud N B, dos Santos M B, Vieira A, Garrido-Maestu A, Espiña B, Queirós R B. A novel portable label-free electrochemical immunosensor for ultrasensitive detection of aeromonas salmonicida in aquaculture seawater[J]. Anal. Bioanal. Chem., 2022, 414: 6591-6600.
doi: 10.1007/s00216-022-04219-9 pmid: 35915251 |
[28] |
Liu Y J, Jiang D, Wang S Y, Cai G Z, Xue L, Li Y B, Liao M, Lin J H. A microfluidic biosensor for rapid detection of salmonella typhimurium based on magnetic separation, enzymatic catalysis and electrochemical impedance analysis[J]. Chinese. Chem. Lett., 2022, 33(6): 3156-3160.
doi: 10.1016/j.cclet.2021.10.064 URL |
[29] |
Huang F C, Xue L, Qi W Z, Cai G Z, Liu Y J, Lin J H. An ultrasensitive impedance biosensor for salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification[J]. Biosens. Bioelectron., 2021, 176: 112921.
doi: 10.1016/j.bios.2020.112921 URL |
[30] |
Gao H, Xu T, Zhou J, Rojas O J, He M, Ji X, Dai H. Electrochemical sensing of staphylococcus aureus based on conductive anti-fouling interface[J]. Microchim. Acta, 2022, 189(3): 97.
doi: 10.1007/s00604-022-05190-z |
[31] |
Sohouli E, Ghalkhani M, Zargar T, Joseph Y, Rahimi-Nasrabadi M, Ahmadi F, Plonska-Brzezinska M E, Ehrlich H. A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of staphylococcus aureus[J]. Electrochim. Acta, 2022, 403: 139633.
doi: 10.1016/j.electacta.2021.139633 URL |
[32] |
Abdelrasoul G N, Anwar A, MacKay S, Tamura M, Shah M A, Khasa D P, Montgomery R R, Ko A I, Chen J. DNA aptamer-based non-faradaic impedance biosensor for detecting e. Coli[J]. Anal. Chim. Acta, 2020, 1107: 135-144.
doi: S0003-2670(20)30145-8 pmid: 32200887 |
[33] |
Wang J, Li H H, Li C B, Ding Y F, Wang Y S, Zhu W J, Wang J, Shao Y C, Pan H, Wang X H. EIS biosensor based on a novel myoviridae bacteriophage SEP37 for rapid and specific detection of salmonella in food matrixes[J]. Food Res. Int., 2022, 158: 111479.
doi: 10.1016/j.foodres.2022.111479 URL |
[34] |
Patel D, Zhou Y, Ramasamy R P. A bacteriophage-based electrochemical biosensor for detection of methicillin-resistant staphylococcus aureus[J]. J. Electrochem. Soc., 2021, 168(5): 057523.
doi: 10.1149/1945-7111/abef85 |
[35] |
Sadani K, Muthuraj L, Nag P, Fernandes M, Kondabagil K, Mukhopadhyay C, Mukherji S. A point of use sensor assay for detecting purely viral versus viral-bacterial samples[J]. Sens. Actuator B-Chem., 2020, 322: 128562.
doi: 10.1016/j.snb.2020.128562 URL |
[36] |
Sedki M, Chen X, Chen C, Ge X, Mulchandani A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms[J]. Biosens. Bioelectron., 2020, 148: 111794.
doi: 10.1016/j.bios.2019.111794 URL |
[37] | Reich P, Preu J A, Bahner N, Bahnemann J. Impedimetric aptamer-based biosensors: Principles and techniques[J]. Adv. Biochem. Eng. Biotechnol., 2020, 174: 17-41. |
[38] |
Kwon K, Yoon T, Gwak H, Lee K, Hyun K A, Jung H I. Fully automated system for rapid enrichment and precise detection of enterobacteria using magneto-electrochemical impedance measurements[J]. BioChip J., 2021, 15(3): 233-242.
doi: 10.1007/s13206-021-00024-1 |
[39] | Malvano F, Pilloton R, Albanese D. Label-free impedimetric biosensors for the control of food safety - a review[J]. Int. J. Environ. An. Ch., 2019, 100: 1-24. |
[40] |
Roushani M, Rahmati Z, Golchin M, Lotfi Z, Nemati M. Electrochemical immunosensor for determination of staphylococcus aureus bacteria by igy immobilized on glassy carbon electrode with electrodeposited gold nanoparticles[J]. Microchim. Acta, 2020, 187(10): 567.
doi: 10.1007/s00604-020-04547-6 |
[41] | Wang L L, Lin X H, Liu T, Zhang Z H, Kong J, Yu H, Yan J, Luan D L, Zhao Y, Bian X J. Reusable and universal impedimetric sensing platform for rapid and sensitive detection of pathogenic bacteria based on bacteria-imprinted polythiophene film[J]. Analyst., 2022, 20(147): 4433-4441. |
[42] |
Roushani M, Sarabaegi M, Rostamzad A. Novel electrochemical sensor based on polydopamine molecularly imprinted polymer for sensitive and selective detection of acinetobacter baumannii[J]. J. Iran Chem. Soc., 2020, 17(9): 2407-2413.
doi: 10.1007/s13738-020-01936-9 |
[43] |
Cui F Y, Shen X Q, Cao B, Ji H J, Liu J L, Zhuang X W, Zeng C J, Qu B, Li S B, Xu Y, Zhou Q. Bacterial identification and adhesive strength evaluation based on a mannose biosensor with dual-mode detection[J]. Biosens. Bioelectron., 2022, 203: 114044.
doi: 10.1016/j.bios.2022.114044 URL |
[44] |
Siavash Moakhar R, AbdelFatah T, Sanati A, Jalali M, Flynn S E, Mahshid S S, Mahshid S. A nanostructured gold/graphene microfluidic device for direct and plasmonic-assisted impedimetric detection of bacteria[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23298-23310.
doi: 10.1021/acsami.0c02654 URL |
[45] |
Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of salmonella spp[J]. Food Chem., 2020, 325: 126868.
doi: 10.1016/j.foodchem.2020.126868 URL |
[46] |
Lopez-Tellez J, Sanchez-Ortega I, Hornung-Leoni C, Santos E, Miranda J, Rodriguez J. Impedimetric biosensor based on a hechtia argentea lectin for the detection of salmonella spp[J]. Chemosensors, 2020, 8: 115.
doi: 10.3390/chemosensors8040115 URL |
[47] | Mondal D, Binish R, Samanta S, Paul D, Mukherji S. Detection of total bacterial load in water samples using a disposable impedimetric sensor[J]. IEEE Sens. J., 2019, PP(99): 1-1. |
[48] |
Song J, Li Y, Yin F, Zhang Z, Ke D, Wang D, Yuan Q, Zhang X E. Enhanced electrochemical impedance spectroscopy analysis of microbial biofilms on an electrochemically in situ generated graphene interface[J]. ACS Sensors, 2020, 5(6): 1795-1803.
doi: 10.1021/acssensors.0c00570 pmid: 32397709 |
[49] |
Chen T, Li M, Liu J. Π-π stacking interaction: A nondestructive and facile means in material engineering for bioapplications[J]. Cryst. Growth. Des., 2018, 18(5): 2765-2783.
doi: 10.1021/acs.cgd.7b01503 URL |
[50] |
Zhu L L, Wang L, Zhang X Q, Li T, Wang Y L, Riaz M A, Sui X, Yuan Z W, Chen Y. Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection[J]. Carbon, 2020, 159: 185-194.
doi: 10.1016/j.carbon.2019.12.035 URL |
[51] |
Bharatula L D, Marsili E, Kwan J J. Impedimetric detection of pseudomonas aeruginosa attachment on flexible ITO-coated polyethylene terephthalate substrates[J]. Electrochim. Acta, 2020, 332: 135390.
doi: 10.1016/j.electacta.2019.135390 URL |
[52] |
Mahari S, Gandhi S. Electrochemical immunosensor for detection of avian salmonellosis based on electroactive reduced graphene oxide (RGO) modified electrode[J]. Bioelectrochemistry, 2022, 144: 108036.
doi: 10.1016/j.bioelechem.2021.108036 URL |
[53] |
Wang L, Huo X T, Qi W Z, Xia Z Z L, Li Y T, Lin J H. Rapid and sensitive detection of salmonella typhimurium using nickel nanowire bridge for electrochemical impedance amplification[J]. Talanta, 2020, 211: 120715.
doi: 10.1016/j.talanta.2020.120715 URL |
[54] |
Swami P, Verma G, Holani A, Kamaraju S, Manchanda V, Sritharan V, Gupta S. Rapid antimicrobial susceptibility profiling using impedance spectroscopy[J]. Biosens. Bioelectron., 2022, 200: 113876.
doi: 10.1016/j.bios.2021.113876 URL |
[55] |
Arreguin-Campos R, Eersels K, Lowdon J W, Rogosic R, Heidt B, Caldara M, Jiménez-Monroy K L, Diliën H, Cleij T J, van Grinsven B. Biomimetic sensing of escherichia coli at the solid-liquid interface: From surface-imprinted polymer synthesis toward real sample sensing in food safety[J]. Microchem. J., 2021, 169: 106554.
doi: 10.1016/j.microc.2021.106554 URL |
[56] |
Elgiddawy N, Ren S, Yassar A, Louis-Joseph A, Sauriat-Dorizon H, El Rouby W M A, El-Gendy A O, Farghali A A, Korri-Youssoufi H. Dispersible conjugated polymer nanoparticles as biointerface materials for label-free bacteria detection[J]. ACS Appl. Mater. Interfaces, 2020, 12(36): 39979-39990.
doi: 10.1021/acsami.0c08305 URL |
[57] |
Cheng L, Yan P X, Fan Y J, Zou H H, Liang H. Mathematical expression and quantitative analysis of impedance spectrum on the interface of glassy carbon electrode[J]. J. Electrochem., 2021, 27(5): 518-528.
doi: 10.13208/j.electrochem.200821 URL |
[58] |
Han E, Li X, Zhang Y, Zhang M N, Cai J R, Zhang X N. Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of staphylococcus aureus[J]. Anal. Biochem., 2020, 611: 113982.
doi: 10.1016/j.ab.2020.113982 URL |
[59] |
Chen T, Zhang A T, Cheng Y J, Zhang Y H, Fu D L, Liu M S, Li A H, Liu J Q. A molecularly imprinted nanoreactor with spatially confined effect fabricated with nano-caged cascaded enzymatic system for specific detection of monosaccharides[J]. Biosens. Bioelectron., 2021, 188: 113355.
doi: 10.1016/j.bios.2021.113355 URL |
[60] |
Chen T, Xu Y H, Peng Z, Li A H, Liu J Q. Simultaneous enhancement of bioactivity and stability of laccase by Cu2+/PAA/PPEGA matrix for efficient biosensing and recyclable decontamination of pyrocatechol[J]. Anal. Chem., 2017, 89(3): 2065-2072.
doi: 10.1021/acs.analchem.6b04691 pmid: 28208260 |
[61] |
Chen T, Wei S, Cheng Z F, Liu J Q. Specific detection of monosaccharide by dual-channel sensing platform based on dual catalytic system constructed by bio-enzyme and bionic enzyme using molecular imprinting polymers[J]. Sens. Actuator B-Chem., 2020, 320: 128430.
doi: 10.1016/j.snb.2020.128430 URL |
[62] |
Cheng Y J, Chen T, Fu D L, Liu J Q. A molecularly imprinted nanoreactor based on biomimetic mineralization of bi-enzymes for specific detection of urea and its analogues[J]. Sens. Actuator B-Chem., 2022, 350: 130909.
doi: 10.1016/j.snb.2021.130909 URL |
[63] |
Cheng Y J, Chen T, Fu D L, Liu M S, Cheng Z F, Hua Y F, Liu J Q. The construction of molecularly imprinted electrochemical biosensor for selective glucose sensing based on the synergistic enzyme-enzyme mimic catalytic system[J]. Talanta, 2022, 242: 123279.
doi: 10.1016/j.talanta.2022.123279 URL |
[64] | Peng H Y, Wang J Z, Liu J, Yu H H, Lin J D, Wu D Y, Tian Z Q. Investigation on electrochemical processes of p-aminothiophenol on gold electrode of nanostructures[J]. J. Electrochem., 2022, 28(4): 2106281. |
[65] |
Lincy S A, Dharuman V, Kumar P. Ultrasensitive and direct detection of DNA and whole e. Coli cell at cholesterol gold nanoparticle composite film electrode[J]. Ionics, 2022, 28(4): 1973-1984.
doi: 10.1007/s11581-022-04463-0 |
[66] |
Karuppiah S, Mishra N C, Tsai W C, Liao W S, Chou C F. Ultrasensitive and low-cost paper-based graphene oxide nanobiosensor for monitoring water-borne bacterial contamination[J]. ACS Sensors, 2021, 6(9): 3214-3223.
doi: 10.1021/acssensors.1c00851 URL |
[67] |
Ranjbar S, Ashari Astani N, Atabay M, Naseri N, Esfandiar A, Reza Ejtehadi M. Electrochemical and computational studies of bio-mimicked Ti3C2Tx mxene-based sensor with multivalent interface[J]. J. Colloid Interf. Sci, 2022, 623: 1063-1074.
doi: 10.1016/j.jcis.2022.05.033 URL |
[68] |
Norouz Dizaji A, Ali Z, Ghorbanpoor H, Ozturk Y, Akcakoca I, Avci H, Dogan Guzel F. Electrochemical-based ‘‘antibiotsensor’’ for the whole-cell detection of the vancomycin-susceptible bacteria[J]. Talanta, 2021, 234: 122695.
doi: 10.1016/j.talanta.2021.122695 URL |
[69] |
Kanso H, Pankratova G, Bollella P, Leech D, Hernandez D, Gorton L. Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes[J]. J. Electroanal. Chem., 2018, 816: 259-264.
doi: 10.1016/j.jelechem.2018.03.030 URL |
[70] |
Ariffin E, Heng L Y, Tan L L, Karim N, Hasbullah S A. A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of e. Coli[J]. Sensors, 2020, 20(5): 1279.
doi: 10.3390/s20051279 URL |
[71] |
Jin Z Y, Liu C W, Liu Z C, Han J R, Fang Y F, Han Y Q, Niu Y S, Wu Y P, Sun C H, Xu Y H. Rational design of hydroxyl-rich Ti3C2Tx mxene quantum dots for high-performance electrochemical n2 reduction[J]. Adv. Energy Mater., 2020, 10(22): 2000797.
doi: 10.1002/aenm.v10.22 URL |
[72] |
Sun J, Kong W H, Jin Z Y, Han Y Q, Ma L Y, Ding X T, Niu Y S, Xu Y H. Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction[J]. Chinese. Chem. Lett., 2020, 31(4): 953-960.
doi: 10.1016/j.cclet.2020.01.035 URL |
[73] |
Fang Y F, Liu Z C, Han J R, Jin Z Y, Han Y Q, Wang F X, Niu Y S, Wu Y P, Xu Y H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene[J]. Adv. Energy Mater., 2019, 9(16): 1803406.
doi: 10.1002/aenm.v9.16 URL |
[74] |
Kong W H, Gong F, Zhou Q, Yu GS, Ji L, Sun X P, Asiri A M, Wang T, Luo Y L, Xu Y H. An MnO2-Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial n2 fixation to NH3 under ambient conditions[J]. J. Mater. Chem. A, 2019, 7(32): 18823-18827.
doi: 10.1039/C9TA04902A URL |
[75] |
Jin Z Y, Xu G F, Niu Y S, Ding X T, Han Y Q, Kong W H, Fang Y F, Niu H T, Xu Y H. Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum[J]. J. Mater. Chem. B, 2020, 8(16): 3513-3518.
doi: 10.1039/C9TB02478F URL |
[76] |
Xu G F, Niu Y S, Yang X C, Jin Z Y, Wang Y, Xu Y H, Niu H T. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence[J]. Adv. Opt. Mater., 2018, 6(24): 1800951.
doi: 10.1002/adom.v6.24 URL |
[77] |
Fang Y F, Yang X C, Chen T, Xu G F, Liu M L, Liu J Q, Xu Y H. Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine[J]. Sensors and Actuators B-Chemical, 2018, 263: 400-407.
doi: 10.1016/j.snb.2018.02.102 URL |
[78] |
Kong W H, Niu Y S, Liu M L, Zhang K X, Xu G F, Wang Y, Wang X W, Xu Y H, Li J H. One-step hydrothermal synthesis of fluorescent mxene-like titanium chock for carbonitride quantum dots[J]. Inorg. Chem. Commun., 2019, 105: 151-157.
doi: 10.1016/j.inoche.2019.04.033 URL |
[79] |
Xu G F, Wang X X, Gong S D, Wei S, Liu J Q, Xu Y H. Solvent-regulated preparation of well-intercalated Ti3C2Tx mxene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology, 2018, 29(35): 355201.
doi: 10.1088/1361-6528/aac8f6 URL |
[80] |
Jin Z Y, Fang Y F, Wang X X, Xu G F, Liu M L, Wei S, Zhou C L, Zhang Y L, Xu Y H. Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets[J]. J. Colloid Interf. Sci, 2019, 537: 306-315.
doi: 10.1016/j.jcis.2018.11.034 URL |
[81] |
Gangwar R, Ray D, Rao K T, Khatun S, Subrahmanyam C, Rengan A K, Vanjari S R K. Plasma functionalized carbon interfaces for biosensor application: Toward the real-time detection of escherichia coli o157:H7[J]. ACS Omega, 2022, 7(24): 21025-21034.
doi: 10.1021/acsomega.2c01802 pmid: 35755381 |
[82] |
Jo H J, Ryu J S, Robby A I, Kim Y S, Chung H J, Park S Y. Rapid and selective electrochemical sensing of bacterial pneumonia in human sputum based on conductive polymer dot electrodes[J]. Sens. Actuator B-Chem., 2022, 368: 132084.
doi: 10.1016/j.snb.2022.132084 URL |
[83] |
Liu Z X, Xianyu Y L, Zheng W S, Zhang J J, Luo Y J, Chen Y P, Dong M L, Wu J, Jiang X Y. T1-mediated nanosensor for immunoassay based on an activatable MnO2nanoassembly[J]. Anal. Chem., 2018, 90(4): 2765-2771.
doi: 10.1021/acs.analchem.7b04817 URL |
[84] |
Xue L, Guo R Y, Huang F C, Qi W Z, Liu Y J, Cai G Z, Lin J H. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria[J]. Biosens. Bioelectron., 2021, 173: 112800.
doi: 10.1016/j.bios.2020.112800 URL |
[85] |
Simić M, Kojić T, Radovanović M, Stojanović G M, Al-Salami H. Impedance spectroscopic analysis of the interidigitated flexible sensor for bacteria detection[J]. IEEE Sens. J., 2020, 20(21): 12791-12798.
doi: 10.1109/JSEN.7361 URL |
[86] |
Wang S J, Sun C Y, Hu Q S, Li S, Wang C B, Wang P, Zhou L. A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of escherichia coli o157:H7[J]. Biochem. Eng. J., 2020, 156: 107513.
doi: 10.1016/j.bej.2020.107513 URL |
[87] |
Urso M, Tumino S, Bruno E, Bordonaro S, Marletta D, Loria G R, Avni A, Shacham-Diamand Y, Priolo F, Mirabella S. Ultrasensitive electrochemical impedance detection of mycoplasma agalactiae DNA by low-cost and disposable Au-decorated NiO nanowall electrodes[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 50143-50151.
doi: 10.1021/acsami.0c14679 URL |
[88] |
Muhsin S A, Al-Amidie M, Shen Z, Mlaji Z, Liu J, Abdullah A, El-Dweik M, Zhang S, Almasri M. A microfluidic biosensor for rapid simultaneous detection of waterborne pathogens[J]. Biosens. Bioelectron., 2022, 203: 113993.
doi: 10.1016/j.bios.2022.113993 URL |
[89] |
Le Brun G, Hauwaert M, Leprince A, Glinel K, Mahillon J, Raskin J P. Electrical characterization of cellulose-based membranes towards pathogen detection in water[J]. Biosensors, 2021, 11(2): 57.
doi: 10.3390/bios11020057 URL |
[90] |
Rabti A, Zayani R, Meftah M, Salhi I, Raouafi N. Impedimetric DNA e-biosensor for multiplexed sensing of escherichia coli and its virulent f17 strains[J]. Microchim. Acta, 2020, 187(11): 635.
doi: 10.1007/s00604-020-04614-y |
[91] |
Lee H, Yi S Y, Kwon J S, Choi J M, Lee D S, Lee S H, Shin Y B. Rapid and highly sensitive pathogen detection by real-time DNA monitoring using a nanogap impedimetric sensor with recombinase polymerase amplification[J]. Biosens. Bioelectron., 2021, 179: 113042.
doi: 10.1016/j.bios.2021.113042 URL |
[92] |
Sannigrahi S, Arumugasamy S K, Mathiyarasu J, Suthindhiran K. Magnetosome-anti-salmonella antibody complex based biosensor for the detection of salmonella typhimurium[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020, 114: 111071.
doi: 10.1016/j.msec.2020.111071 URL |
[93] |
Chandran A, Zavasnik J, Cveji E, Sarang S, Stojanovi G M. Performances and biosensing mechanisms of interdigitated capacitive sensors based on the hetero-mixture of SnO2 and In2O3[J]. Sensors, 2020, 20(21): 6323.
doi: 10.3390/s20216323 URL |
[94] |
Shaik S, Saminathan A, Sharma D, Krishnaswamy J A, Mahapatra D R. Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique[J]. Biomed. Microdevices, 2021, 23(2): 26.
doi: 10.1007/s10544-021-00564-1 pmid: 33885989 |
[95] |
Park J H, Bong J H, Jung J, Sung J S, Pyun J C. Microbial biosensor for salmonella using anti-bacterial antibodies isolated from human serum[J]. Enzyme. Microb. Tech., 2020, 144: 109721.
doi: 10.1016/j.enzmictec.2020.109721 URL |
[96] |
Lee B E, Kang T, Jenkins D, Li Y, Wall M M, Jun S. A single-walled carbon nanotubes-based electrochemical impedance immunosensor for on-site detection of listeria monocytogenes[J]. J. Food Sci., 2022, 87(1): 280-288.
doi: 10.1111/jfds.v87.1 URL |
[97] |
Ozer T, Mccord C, Geiss B J, Dandy D, Henry C S. Thermoplastic electrodes for detection of escherichia coli[J]. J. Electrochem. Soc., 2021, 168(4): 047509.
doi: 10.1149/1945-7111/abf77e |
[98] |
Yaghoobi A, Abiri R, Alvandi A, Arkan E, Mohammadi G, Farshadnia T, Jalalvand A R. An efficiently engineered electrochemical biosensor as a novel and user-friendly electronic device for biosensing of streptococcus pneumoniae bacteria[J]. Sensing and Bio-Sensing Research, 2022, 36: 100494.
doi: 10.1016/j.sbsr.2022.100494 URL |
[99] |
da Silva Junior A G, Frias I A, Lima-Neto R G, Franco O L, Oliveira M D, Andrade C A. Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle[J]. Enzyme. Microb. Tech., 2022, 160: 110088.
doi: 10.1016/j.enzmictec.2022.110088 URL |
[100] | Vu Q K, Tran Q H, Vu N P, Anh T L, Le Dang T T, Matteo T, Nguyen T H H. A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens[J]. Mater. Today Commun., 2021, 26: 101726. |
[101] |
Wang O L, Jia X Y, Liu J, Sun M, Wu J K. Rapid and simple preparation of an mxene/polypyrrole-based bacteria imprinted sensor for ultrasensitive salmonella detection[J]. J. Electroanal. Chem., 2022, 918: 116513.
doi: 10.1016/j.jelechem.2022.116513 URL |
[102] |
Wang R F, Wang R. Modification of polyacrylonitrile-derived carbon nanofibers and bacteriophages on screen-printed electrodes: A portable electrochemical biosensor for rapid detection of escherichia coli[J]. Bioelectrochemistry, 2022, 148: 108229.
doi: 10.1016/j.bioelechem.2022.108229 URL |
[103] |
Skorjanc T, Mavrič A, Sørensen M N, Mali G, Wu C, Valant M. Cationic covalent organic polymer thin film for label-free electrochemical bacterial cell detection[J]. ACS Sensors, 2022, 7(9): 2743-2749.
doi: 10.1021/acssensors.2c01292 pmid: 36053557 |
[104] |
Rishi M, Amreen K, Gohel K, Javed A, Dubey S K, Goel S. Three different rapidly prototyped polymeric substrates with interdigitated electrodes for escherichia coli sensing: A comparative study[J]. IEEE Trans. Nanobiosci., 2022, 22(2): 337-344.
doi: 10.1109/TNB.2022.3190290 URL |
[1] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[2] | 张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学(中英文), 2022, 28(2): 2108471-. |
[3] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[4] | 李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学(中英文), 2021, 27(5): 467-497. |
[5] | 彭思源, 杨实润, 周静红, 隋志军, 章涛, 石易, 周兴贵. BC/CoNi2S4@PPy柔性复合电极材料的制备及电化学性能[J]. 电化学(中英文), 2021, 27(1): 14-25. |
[6] | 掌学谦, 卢周广, 黄苇苇. 有机电极材料过渡态的研究进展[J]. 电化学(中英文), 2021, 27(1): 1-13. |
[7] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
[8] | 马洪运, 姚晓辉, 妙孟姚, 易阳, 伍绍中, 周江. 高镍正极材料(LiNi0.83Co0.12Mn0.05O2)45°C循环失效机理研究[J]. 电化学(中英文), 2020, 26(3): 431-440. |
[9] | 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学(中英文), 2020, 26(1): 3-18. |
[10] | 雷 文, 肖卫平, 王得丽. 用于二氧化碳电化学还原反应的铜基催化剂研究进展[J]. 电化学(中英文), 2019, 25(4): 455-466. |
[11] | 周田田,邬冰,邓超,高颖. 锰氧化物聚苯胺复合电极材料的制备与性能[J]. 电化学(中英文), 2018, 24(2): 137-142. |
[12] | 廖群,张曙枫,冷文华. 铁电极电还原溴化钠甲醇溶液反应动力学和机理[J]. 电化学(中英文), 2017, 23(6): 645-653. |
[13] | 万慧, 应宗荣,刘信东,卢建建,张文文. 超级电容器用凹凸棒石负载氮掺杂碳@NiCo2O4复合电极材料的制备及其电化学性能研究[J]. 电化学(中英文), 2017, 23(1): 28-35. |
[14] | 史坤明,郭建伟,王佳. Pt/C催化剂氧还原反应的交流阻抗动态研究[J]. 电化学(中英文), 2016, 22(5): 542-548. |
[15] | 段舒怡,张伟,朴俊宇,曹安民,万立骏. 具有均匀壳层的纳米功能材料:构筑与应用[J]. 电化学(中英文), 2016, 22(3): 260-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||