电化学(中英文) ›› 2021, Vol. 27 ›› Issue (1): 1-13. doi: 10.13208/j.electrochem.201012
收稿日期:
2020-10-12
修回日期:
2020-11-16
出版日期:
2021-02-28
发布日期:
2020-12-02
通讯作者:
卢周广,黄苇苇
E-mail:luzg@sustech.edu.cn;huangweiwei@ysu.edu.cn
基金资助:
Xue-Qian Zhang1,2, Zhou-Guang Lu2,*(), Wei-Wei Huang3,*()
Received:
2020-10-12
Revised:
2020-11-16
Published:
2021-02-28
Online:
2020-12-02
Contact:
Zhou-Guang Lu,Wei-Wei Huang
E-mail:luzg@sustech.edu.cn;huangweiwei@ysu.edu.cn
摘要:
有机电极材料具有理论比容量大、结构可设计性强、加工使用过程环境友好等优点被广泛应用于二次电池的研究中。有机电极材料在氧化还原过程会产生具有不成对电子的自由基中间体,自由基中间体的稳定程度影响电极材料的电化学性能。通过改变材料的结构可以调控自由基中间体的稳定性,从而优化有机电极材料的电化学性能。本文对有机电极材料在电化学过程中产生的自由基中间体进行了分类介绍,阐明了材料结构、自由基中间体稳定性和电化学性能之间的关系。
掌学谦, 卢周广, 黄苇苇. 有机电极材料过渡态的研究进展[J]. 电化学(中英文), 2021, 27(1): 1-13.
Xue-Qian Zhang, Zhou-Guang Lu, Wei-Wei Huang. Research Progress on Transition State of Organic Electrode Materials[J]. Journal of Electrochemistry, 2021, 27(1): 1-13.
[1] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657.
doi: 10.1038/451652a URL pmid: 18256660 |
[2] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359-367.
doi: 10.1038/35104644 URL pmid: 11713543 |
[3] |
Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chem. Rev., 2018,118(23):11433-11456.
doi: 10.1021/acs.chemrev.8b00422 URL pmid: 30500179 |
[4] | Yang Y S(杨裕生). A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem. (电化学), 2020,26(4):443-463. |
[5] | Chen J H(陈嘉卉), Zhong X B(钟晓斌), He C(何超), Wang X X(王晓晓), Xu Q C(许清池), Li J F(李剑锋). Synjournal and raman study of hollow core-shell Ni1.2Co0.8P@N-C as an anode material for sodium-ion batteries[J]. J. Electrochem (电化学), 2020,26(3):328-337. |
[6] | Liu Y C(刘永畅), Chen C C(陈程成), Zhang N(张宁), Wang L B(王刘彬), Xiang X D(向兴德), Chen J(陈军). Research and application of key materials for sodium-ion batteries[J]. J. Electrochem. (电化学), 2016,22(5):437-452. |
[7] | Wang F F(王凡凡), Liu X B(刘晓斌), Chen L(陈龙), Chen C C(陈程成), Liu Y C(刘永畅), Fan L Z(范丽珍). Recent progress in key materials for room-temperature sodium-ion batteries[J]. J. Electrochem. (电化学), 2019,25(1):55-76. |
[8] | Yuan H T(袁华堂), Jiao L F(焦丽芳), Cao J S(曹建胜), Liu X S(刘秀生), Zhao M(赵明), Wang Y M(王永梅). Preparation and electrochemical magnesium insertion behaviors of MgV2O6[J]. J. Electrochem. (电化学), 2004,10(4):460-463. |
[9] |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010,22(3):587-603.
doi: 10.1021/cm901452z URL |
[10] |
Liu Q, Su X, Lei D, Qin Y, Wen J G, Guo F M, Wu Y M A, Rong Y C, Xiao X H, Aguesse F, Bareno J, Ren Y, Lu W Q, Li Y X. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nat. Energy, 2018,3(11):936-943.
doi: 10.1038/s41560-018-0180-6 URL |
[11] |
Zhou Y N, Wang P F, Niu Y B, Li Q H, Yu X Q, Yin Y X, Xu S L, Guo Y G. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019,55:143-150.
doi: 10.1016/j.nanoen.2018.10.072 URL |
[12] |
Xie J, Zhang Q C. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019,15(15):1805061.
doi: 10.1002/smll.v15.15 URL |
[13] |
Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y L, Yao Y. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chem. Rev., 2020,120(14):6490-6557.
doi: 10.1021/acs.chemrev.9b00482 URL pmid: 32207919 |
[14] | Huang J H(黄健航), Dong X L(董晓丽), Guo Z W(郭昭薇), Ma Y Y(马元元), Wang Y Y(王艳荣), Wang Y G(王永刚). Electrochemical energy storage and conversion based on organic electrodes[J]. J. Electrochem. (电化学), 2020,26(4):486-494. |
[15] |
Wang L B, Ni Y X, Hou X S, Chen L, Li F J, Chen J. A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage[J]. Angew. Chem. Int. Ed., 2020,59(49):22126-22131.
doi: 10.1002/anie.v59.49 URL |
[16] |
Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nat. Rev. Chem., 2020,4(3):127-142.
doi: 10.1038/s41570-020-0160-9 URL |
[17] |
Wu Y W, Zeng R H, Nan J M, Shu D, Qiu Y C, Chou S L. Quinone electrode materials for rechargeable lithium/sodium ion batteries[J]. Adv. Energy Mater., 2017,7(24):1700278.
doi: 10.1002/aenm.v7.24 URL |
[18] |
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries[J]. Angew. Chem Int. Ed., 2020,57(30):9443-9446.
doi: 10.1002/anie.201805540 URL |
[19] |
Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2020,60(6):3205-3211.
doi: 10.1002/anie.v60.6 URL |
[20] |
Liang Y L, Tao Z L, Chen J. Organic electrode materials for rechargeable lithium batteries[J]. Adv. Energy Mater., 2012,2(7):742-769.
doi: 10.1002/aenm.201100795 URL |
[21] |
Zhu L M, Lei A W, Cao Y L, Ai X P, Yang H X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode[J]. Chem. Commun., 2013,49(6):567-569.
doi: 10.1039/C2CC36622C URL |
[22] |
Luo Y W, Zheng F P, Liu L J, Lei K X, Hou X S, Xu G, Meng H, Shi J F, Li F J. A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions[J]. ChemSusChem, 2020,13(9):2239-2244.
doi: 10.1002/cssc.201903083 URL pmid: 32022410 |
[23] | Wu Z, Xie J, Xu Z C J, Zhang S Q, Zhang Q C. Recent progress in metal-organic polymers as promising electrodes for lithium/sodium rechargeable batteries[J]. J.Mater. Chem. A, 2019,7(9):4259-4290. |
[24] |
Wang J L, Yang J, Wan C R, Du K, Xie, J Y, Xu N X. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Adv. Funct. Mater., 2003,13(6):487-492.
doi: 10.1002/adfm.200304284 URL |
[25] |
Koshika K, Sano N, Oyaizu K, Nishide H. An aqueous, electrolyte-type, rechargeable device utilizing a hydrophi-lic radical polymer-cathode[J]. Macromol. Chem. Phys., 2009,210(22):1989-1995.
doi: 10.1002/macp.200900257 URL |
[26] |
Feng J K, Cao Y L, Ai X P, Yang H X. Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries[J]. J. Power Sources, 2008,177(1):199-204.
doi: 10.1016/j.jpowsour.2007.10.086 URL |
[27] | Koshika K, Sano N, Oyaizu K, Nishide H. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte[J]. Chem. Commun., 2009,45(7):836-838. |
[28] |
Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Adv. Energy Mater., 2015,5(11):1402034.
doi: 10.1002/aenm.201402034 URL |
[29] |
Huang W W, Zhu Z Q, Wang L J, Wang S W, Li H, Tao Z L, Shi J F, Guan L H, Chen J. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte[J]. Angew. Chem. Int. Ed., 2013,52(35):9162-9166.
doi: 10.1002/anie.201302586 URL |
[30] |
Huang W W, Zhang X Q, Zheng S B, Zhou W J, Xie J, Yang Z N, Zhang Q C. Calix[6]quinone as high-performance cathode for lithium-ion battery[J]. Sci. China Mater., 2020,63(3):339-346.
doi: 10.1007/s40843-019-1185-2 URL |
[31] | Huang W W, Zheng S B, Zhang X Q, Zhou W J, Xiong W X, Chen J. Synjournal and application of calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries[J]. Energy Storage Mater., 2020,26:465-471. |
[32] | Xiong W X, Huang W W, Zhang M, Hu P D, Cui H M, Zhang Q C. Pillar[5]quinone-carbon nanocomposites as high-capacity cathodes for sodium-ion batteries[J]. Chem.Mater., 2019,31(19):8069-8075. |
[33] | Zhang M, Zhang Y, Huang W W, Zhang Q C. Recent progress in calix[n]quinone (n=4, 6) and pillar[5]quinone electrodes for secondary rechargeable batteries[J]. Batteries & Supercaps, 2020,3(6):476-487. |
[34] |
Gomberg M. An instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem. Soc., 1900,22(11):757-771.
doi: 10.1021/ja02049a006 URL |
[35] |
Blasco T, Camblor M A, Corma A, Perezpariente J. The state of Ti in titanoaluminosilicates isomorphous with zeolite β[J]. J. Am. Chem. Soc., 1993,115(25):11806-11813.
doi: 10.1021/ja00078a020 URL |
[36] |
Bachmann W E, Wiselogle F Y. The relative stability of pentaarylethanes. III.1 The reversible dissociation of pentaarylethanes*[J]. J. Org. Chem., 1936,1(4):354-382.
doi: 10.1021/jo01233a006 URL |
[37] |
Griller D, Ingold K U. Persistent carbon-centered radicals[J]. Acc. Chem. Res., 1976,9(1):13-19.
doi: 10.1021/ar50097a003 URL |
[38] |
Kerk G J M V D, Noltes J G, Luijten J G A. Investigations on organo-tin compounds. VII* The addition of organo-tin hydrides to olefinic double bonds[J]. J. Appl. Chem., 1957,7(7):356-365.
doi: 10.1002/jctb.v7:7.n URL |
[39] |
Yan M, Lo J C, Edwards J T, Baran P S. Radicals: reactive intermediates with translational potential[J]. J. Am. Chem. Soc., 2016,138(39):12692-12714.
URL pmid: 27631602 |
[40] | Xu Z M(许振民), Bian Z F(卞振锋). Photocatalytic methane conversion[J]. Acta Phys.-Chim. Sin. (物理化学学报), 2020,36(3):1907013. |
[41] | Wang Q B(王庆兵), Guo Z W(郭政伟), Chen G(陈弓), He G(何刚). DPPF-mediated C-H arylation of arenes with aryl iodides for synjournal of biaryl linkages[J]. Acta Phys.-Chim. Sin. (物理化学学报), 2019,35(9):1021-1026. |
[42] |
Faust T B, D’Alessandro D M. Radicals in metal-organic frameworks[J]. RSC Adv., 2014,4(34):17498-17512.
doi: 10.1039/C4RA00958D URL |
[43] |
Potts S V, Barbour L J, Haynes D A, Rawson J M, Lloyd G O. Inclusion of thiazyl radicals in porous crystalline materials[J]. J. Am. Chem. Soc., 2011,133(33):12948-12951
doi: 10.1021/ja204548d URL pmid: 21776993 |
[44] |
Xu F, Xu H, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage[J]. Angew. Chem. Int. Ed., 2015,54(23):6814-6818.
doi: 10.1002/anie.201501706 URL |
[45] |
Zhao Q, Lu Y, Chen J. Advanced organic electrode materials for rechargeable sodium-ion batteries[J]. Adv. Energy Mater, 2017,7(8):1601792.
doi: 10.1002/aenm.201601792 URL |
[46] |
Sun D L, Rosokha S V, Kochi J K. Donor-acceptor (electronic) coupling in the precursor complex to organic electron transfer: intermolecular and intramolecular self-exchange between phenothiazine redox centers[J]. J. Am. Chem. Soc., 2004,126(5):1388-1401.
URL pmid: 14759197 |
[47] |
Ji L, Friedrich A, Krummenacher I, Eichhorn A, Braunschweig H, Moos M, Hahn S, Geyer F L, Tverskoy O, Han J, Lambert C, Dreuw A, Marder T B, Bunz UHF. Preparation, properties, and structures of the radical anions and dianions of azapentacenes[J]. J. Am. Chem. Soc., 2017,139(44):15968-15976.
URL pmid: 28988473 |
[48] |
Okino K, Hira S, Inoue Y, Sakamaki D, Seki S. The divergent dimerization behavior of N-substituted dicyanomet-hyl radicals: dynamically stabilized versus stable radicals[J]. Angew. Chem. Int. Ed., 2017,56(52):16597-16601.
doi: 10.1002/anie.201710354 URL |
[49] |
Kolek M, Otteny F, Schmidt P, Muck-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions[J]. Energy Environ. Sci., 2017,10(11):2334-2341.
doi: 10.1039/C7EE01473B URL |
[50] |
Wu S F, Wang W X, Li M C, Cao L J, Lyu F C, Yang M Y, Wang Z Y, Shi Y, Nan B, Yu S C, Sun Z F, Liu Y, Lu Z G. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate[J]. Nat. Commun., 2016,7:13318.
doi: 10.1038/ncomms13318 URL pmid: 27819293 |
[51] |
Sun T, Xie J, Guo W, Li D S, Zhang Q C. Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries[J]. Adv. Energy Mater., 2020,10(19):1904199.
doi: 10.1002/aenm.v10.19 URL |
[52] |
Guo C Y, Zhang K, Zhao Q, Peia L K, Chen J. High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte[J]. Chem. Commun., 2015,51(50):10244-10247.
doi: 10.1039/C5CC02251G URL |
[53] |
Wang C L, Fang Y G, Xu Y, Liang L Y, Zhou M, Zhao H P, Lei Y. Manipulation of disodium rhodizonate: factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability[J]. Adv. Funct. Mater., 2016,26(11):1777-1786.
doi: 10.1002/adfm.v26.11 URL |
[54] |
Peng C X, Ning G H, Su J, Zhong G M, Tang W, Tian B B, Su C L, Yu D Y, Zu L H, Yang J H, Ng M F, Hu Y S, Yang Y, Armand M, Loh K P. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes[J]. Nat. Energy, 2017,2:17074.
doi: 10.1038/nenergy.2017.74 URL |
[55] |
Lee M, Hong J, Seo D H, Nam D H, Nam K T, Kang K, Park C B. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound[J]. Angew. Chem. Int. Ed., 2013,52(32):8322-8328.
doi: 10.1002/anie.v52.32 URL |
[56] |
Lee M, Hong J, Kim H, Lim H D, Cho S B, Kang K, Park C B. Organic nanohybrids for fast and sustainable energy storage[J]. Adv. Mater., 2014,26(16):2558-2565.
doi: 10.1002/adma.201305005 URL pmid: 24488928 |
[57] | Lee S, Hong J, Jung S K, Ku K, Kwon G, Seong W M, Kim H, Yoon G, Kang I, Hong K, Jang H W, Kang K. Charge-transfer complexes for high-power organic rechar-geable batteries[J]. Energy Storage Mater., 2019,20, 462-469. |
[58] |
Ma T, Liu L J, Wang J Q, Lu Y, Chen J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries[J]. Angew. Chem. Int. Ed., 2020,59(28), 11533-11539.
doi: 10.1002/anie.v59.28 URL |
[59] |
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries[J]. J. Am. Chem. Soc., 2019,141(24):9623-9628.
doi: 10.1021/jacs.9b03467 URL pmid: 31121094 |
[60] |
Li F, Gore D N, Wang S Y, Lutkenhaus J L. Unusual internal electron transfer in conjugated radical polymers[J]. Angew. Chem. Int. Ed., 2017,56(33):9856-9859.
doi: 10.1002/anie.v56.33 URL |
[1] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[2] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[3] | 王雪, 张丽, 刘长鹏, 葛君杰, 祝建兵, 邢巍. 碱性介质中非贵金属氧还原催化剂的结构调控进展[J]. 电化学(中英文), 2022, 28(2): 2108501-. |
[4] | 雷 刚, 刘 洋. 超四面体硫簇结构调控与电化学发光研究进展[J]. 电化学(中英文), 2019, 25(3): 349-362. |
[5] | 高睿, 王俊凯, 胡中波, 刘向峰. 锂-空气电池正极催化剂表界面调控及构效关系研究进展[J]. 电化学(中英文), 2019, 25(1): 77-88. |
[6] | 林晓东,陈杜宏,田中群. 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学(中英文), 2016, 22(6): 570-576. |
[7] | 艾新平, 曹余良, 杨汉西. 锂-硫二次电池界面反应的特殊性与对策分析[J]. 电化学(中英文), 2012, 18(3): 224-228. |
[8] | 李瑞琦, 宋春华, 徐超, 涂丽杏, 邱国红, 刘凡, . 常压回流掺钴钙锰矿锂离子电池正极材料[J]. 电化学(中英文), 2010, 16(1): 90-95. |
[9] | 张文华, 陈瑶, 艾新平, 曹余良, . 硫/介孔碳复合正极材料的制备与表征[J]. 电化学(中英文), 2010, 16(1): 16-19. |
[10] | 杜锐, 袁中直, . 锂硫二次电池硫-碳纳米管正极的合成和性能[J]. 电化学(中英文), 2009, 15(3): 284-287. |
[11] | 曹晓雨, 李涛, 谢玲玲, 闫向阳, 王驰伟, . 软化学技术合成高容量锂二次电池正极材料AgV_3O_8(英文)[J]. 电化学(中英文), 2008, 14(2): 184-189. |
[12] | 王军红,刘建敏,杨化滨,周作祥. PVA碱性凝胶聚合物电解质薄膜电化学稳定性研究[J]. 电化学(中英文), 2005, 11(2): 129-132. |
[13] | 杜翠薇,赵煜娟,张刚,吴荫顺,刘庆国. 用于锂离子电池的国产天然石墨性能研究[J]. 电化学(中英文), 2002, 8(4): 404-408. |
[14] | 吴宇平, 万春荣, 姜长印, 李建军. 锂离子二次电池碳负极材料的改性[J]. 电化学(中英文), 1998, 4(3): 286-292. |
[15] | 周家宏, 薛宽宏, 潘谷平. 锌离子在水相介质Zn/V_2O_5二次电池中的迁移性能研究[J]. 电化学(中英文), 1998, 4(2): 170-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||