电化学(中英文) ›› 2023, Vol. 29 ›› Issue (6): 2218003. doi: 10.13208/j.electrochem.2218003
所属专题: “电分析”专题文章
覃晓丽a,b,*(), 詹子颖b, Sara Jahanghirib, Kenneth Chub, 张丛洋b, 丁志峰b,*()
收稿日期:
2022-11-12
修回日期:
2022-12-02
接受日期:
2022-12-07
出版日期:
2023-06-28
发布日期:
2022-12-16
Xiao-Li Qina,b,*(), Zi-Ying Zhanb, Sara Jahanghirib, Kenneth Chub, Cong-Yang Zhangb, Zhi-Feng Dingb,*()
Received:
2022-11-12
Revised:
2022-12-02
Accepted:
2022-12-07
Published:
2023-06-28
Online:
2022-12-16
Contact:
*Tel: (86-731)84617022, E-mail: 摘要:
设计和研制具有超灵敏、高精度、选择性好的免疫传感器对于疾病的早期诊断和筛查以及疾病治疗过程的监测具有十分重要的意义。其中,电化学免疫分析法和电化学发光(ECL)免疫分析法,由于具有稳定性好、灵敏度高、线性范围宽、可控性好等优点而备受关注,已成为当前的研究热点之一。金属有机框架(MOFs)作为一类新型的多孔晶体材料,由于其具有比表面积大、化学稳定性好、孔径和纳米级骨架结构可调节等优点,在电化学和ECL免疫传感器的制备中得到了广泛的应用。MOFs不仅可以作为固定生物识别分子的敏感平台,还可以用于富集痕量分析物和信号分子来放大分析信号,提高电化学或ECL免疫分析的灵敏度。目前,科研人员已合成各种各样具有不同性能和形貌的MOFs纳米材料,并用于开发高性能的电化学免疫传感器和ECL免疫传感器。本文综述了不同类型的基于MOFs纳米材料的电化学/ECL免疫传感器的制备及其在免疫分析中的检测应用。研究表明,MOFs不仅可以作为电极表面修饰的基底、信号探针(包括电活性标记分子和电化学发光发光标记探针)、催化活性标记物,还可以作为负载各种生物分子、纳米材料的载体,最终可用于灵敏的电化学和ECL检测。此外,本综述还讨论了未来发展功能化MOFs纳米材料的挑战和机遇,并为未来设计和制造基于MOFs的高性能免疫传感器提出了一些指导性意见。
覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003.
Xiao-Li Qin, Zi-Ying Zhan, Sara Jahanghiri, Kenneth Chu, Cong-Yang Zhang, Zhi-Feng Ding. Metal-Organic Frameworks for Electrochemical and Electrochemiluminescent Immunoassay[J]. Journal of Electrochemistry, 2023, 29(6): 2218003.
Labeled composition | Surface | Target | Linear range | LOD | Ref. | |||
---|---|---|---|---|---|---|---|---|
Fe(III)-MIL-88B-NH2@ZnSeQDs | electropolymerized dopamine MIP | SCCA | 0.1×10-3 - 100 ng·mL-1 | 31 fg·mL-1 | [ | |||
SnS2QDs@MIL-101(Cr) | CuS/2D high porous carbon | Carbohydrate antigen 24-2 | 0.1×10-3 - 100 U·mL-1 | 15 μU·mL-1 | [ | |||
Ag+@UiO-66-NH2@CdWS | Au/rGO | PSA | 0.1×10-3 - 10 ng·mL-1 | 38 fg·mL-1 | [ | |||
Ti(IV)-MIL-125 | AgNCs-Sem@AuNPs | NT-proBNP | 2.5×10-4 - 100 ng·mL-1 | 0.11 pg·mL-1 | [ | |||
Fe3O4@PDA-CuxO | MIL-101(AI):Ru-PEI-Au | Procalcitonin | 5×10-4 - 100 ng·mL-1 | 0.18 pg·mL-1 | [ | |||
Ru-MOFs | Pd@Au-L-Cys | Apo-A1 | 1×10-6 - 1.00 ng mL-1 | 1 fg·mL-1 | [ | |||
MMOF@CdSnS | Ag@rGO | AFP | 1×10-6 - 100 ng·mL-1 | 0.2 fg·mL-1 | [ | |||
Co-MOFs/ABEI | Fe3O4@PPy-Au | Aβ42 | 1×10-5 - 100 ng·mL-1 | 3 fg·mL-1 | [ | |||
/ | Ce-MOF@g-C3N4/Au | NT-proBNP | 5×10-3 - 20 ng·mL-1 | 3.59 pg·mL-1 | [ | |||
/ | MOF-545-Zn@MoS2QDs | CEA | 0.18 - 1000 ng·mL-1 | 0.45 pg·mL-1 | [ | |||
/ | Ru(bpy)32+@UiO-66-NH2 | CA15-3 | 5×10-4 - 500 U·mL-1 | 0.17705 μU·mL-1 | [ | |||
/ | Ru-MOFs | FABP | 1.5×10-4 - 150 ng·mL-1 | 2.6 fg·mL-1 | [ |
[1] |
Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives[J]. Int. J. Biol. Macromol., 2020, 165: 3020-3039.
doi: 10.1016/j.ijbiomac.2020.10.191 pmid: 33122068 |
[2] |
Tang Z X, Ma Z F. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review[J]. Biosens. Bioelectron., 2017, 98: 100-112.
doi: S0956-5663(17)30415-3 pmid: 28662470 |
[3] |
Shahriyari H A, Nikmanesh Y, Jalali S, Tahery N, Fard A Z, Hatamzadeh N, Zarea K, Cheraghi M, Mohammadi M J. Air pollution and human health risks: Mechanisms and clinical manifestations of cardiovascular and respiratory diseases[J]. Toxin Rev., 2022, 41(2): 606-617.
doi: 10.1080/15569543.2021.1887261 URL |
[4] |
Chiner-Vives E, Cordovilla-Perez R, De la Rosa-Carrillo D, Garcia-Clemente M, Izquierdo-Alonso J L, Otero-Candelera R, Perez-de Llano L, Sellares-Torres J, de Granda-Orive J I. Short and long-term impact of covid-19 infection on previous respiratory diseases[J]. Arch Bronconeum., 2022, 58: 39-50.
doi: 10.1016/j.arbres.2022.03.011 URL |
[5] |
Hunter B, Hindocha S, Lee R W. The role of artificial intelligence in early cancer diagnosis[J]. Cancers, 2022, 14(6): 1524.
doi: 10.3390/cancers14061524 URL |
[6] |
Meng H Y, Ruan J J, Yan Z H, Chen Y Q, Liu J S, Li X D, Meng F B. New progress in early diagnosis of atherosclerosis[J]. Int. J. Mol. Sci., 2022, 23(16): 8939.
doi: 10.3390/ijms23168939 URL |
[7] |
Fang L, Liao X F, Jia B Y, Shi L C, Kang L Z, Zhou L D, Kong W J. Recent progress in immunosensors for pesticides[J]. Biosens. Bioelectron., 2020, 164: 112255.
doi: 10.1016/j.bios.2020.112255 URL |
[8] |
Kim J, Park M. Recent progress in electrochemical immunosensors[J]. Biosensors, 2021, 11(10): 360.
doi: 10.3390/bios11100360 URL |
[9] |
Yang Z, Atiyas Y, Shen H, Siedlik M J, Wu J, Beard K, Fonar G, Dolle J P, Smith D H, Eberwine J H, Meaney D F, Issadore D A. Ultrasensitive single extracellular vesicle detection using high throughput droplet digital enzyme-linked immunosorbent assay[J]. Nano Lett., 2022, 22(11): 4315-4324.
doi: 10.1021/acs.nanolett.2c00274 pmid: 35588529 |
[10] |
Gao Y, Zhou Y Z, Chandrawati R. Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA)[J]. ACS Appl. Nano Mater., 2020, 3(1): 1-21.
doi: 10.1021/acsanm.9b02003 URL |
[11] |
Lyu A H, Jin T C, Wang S S, Huang X X, Zeng W H, Yang R, Cui H. Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads[J]. Sens. Actuator B-Chem., 2021, 349: 130739.
doi: 10.1016/j.snb.2021.130739 URL |
[12] |
Xu L R, Cao Z Y, Ma R L, Wang Z Z, Qin Q, Liu E Y, Su B. Visualization of latent fingermarks by enhanced chemiluminescence immunoassay and pattern recognition[J]. Anal. Chem., 2019, 91(20): 12859-12865.
doi: 10.1021/acs.analchem.9b02631 pmid: 31523963 |
[13] |
Orme M E, Voreck A, Aksouh R, Ramsey-Goldman R, Schreurs M W J. Systematic review of anti-dsDNA testing for systemic lupus erythematosus: A meta-analysis of the diagnostic test specificity of an anti-dsDNA fluorescence enzyme immunoassay[J]. Autoimmun. Rev., 2021, 20(11): 102943.
doi: 10.1016/j.autrev.2021.102943 URL |
[14] |
Li H F, Wen K, Dong B L, Zhang J, Bai Y C, Liu M G, Li P P, Mujtaba M G, Yu X Z, Yu W B, Ke Y B, Shen J Z, Wang Z H. Novel inner filter effect-based fluorescence immunoassay with gold nanoclusters for bromadiolone detection in human serum[J]. Sens. Actuator B-Chem., 2019, 297: 126787.
doi: 10.1016/j.snb.2019.126787 URL |
[15] |
Zhang Y, Zhang R, Yang X L, Qi H L, Zhang C X. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals[J]. J. Pharm. Anal., 2019, 9(1): 9-19.
doi: 10.1016/j.jpha.2018.11.004 pmid: 30740252 |
[16] | Du F X, Chen Y Q, Meng C D, Lou B H, Zhang W, Xu G B. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy[J]. Curr. Opin. Electrochem., 2021, 28: 100725. |
[17] |
Tang D, Yang X, Wang B, Ding Y, Xu S, Liu J, Peng Y, Yu X, Su Z, Qin X. One-step electrochemical growth of 2D/3D Zn(ii)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay[J]. ACS Appl. Mater. Interfaces, 2021, 13(39): 46225-46232.
doi: 10.1021/acsami.1c09095 URL |
[18] |
Feng J J, Chu C S, Ma Z F. Fenton and Fenton-like catalysts for electrochemical immunoassay: A mini review[J]. Electrochem. Commun., 2021, 125: 106970.
doi: 10.1016/j.elecom.2021.106970 URL |
[19] |
Nellaiappan S, Mandali P K, Prabakaran A, Krishnan U M. Electrochemical immunosensors for quantification of procalcitonin: Progress and prospects[J]. Chemosensors, 2021, 9(7): 182.
doi: 10.3390/chemosensors9070182 URL |
[20] |
Tang J, Tang D P. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: A review[J]. Microchim. Acta, 2015, 182(13-14): 2077-2089.
doi: 10.1007/s00604-015-1567-8 URL |
[21] |
Pan M F, Gu Y, Yun Y G, Li M, Jin X C, Wang S. Nanomaterials for electrochemical immunosensing[J]. Sensors, 2017, 17(5): 1041.
doi: 10.3390/s17051041 URL |
[22] |
Sanchez A, Villalonga A, Martinez-Garcia G, Parrado C, Villalonga R. Dendrimers as soft nanomaterials for electrochemical immunosensors[J]. Nanomaterials, 2019, 9(12): 1745.
doi: 10.3390/nano9121745 URL |
[23] |
Feng T T, Wang Y, Qiao X W. Recent advances of carbon nanotubes-based electrochemical immunosensors for the detection of protein cancer biomarkers[J]. Electroanalysis, 2017, 29(3): 662-675.
doi: 10.1002/elan.v29.3 URL |
[24] |
Popov A, Brasiunas B, Kausaite-Minkstimiene A, Ramanaviciene A. Metal nanoparticle and quantum dot tags for signal amplification in electrochemical immunosensors for biomarker detection[J]. Chemosensors, 2021, 9(4): 85.
doi: 10.3390/chemosensors9040085 URL |
[25] |
Yang H L, Xu W T, Zhou Y. Signal amplification in immunoassays by using noble metal nanoparticles: A review[J]. Microchim. Acta, 2019, 186(12): 859.
doi: 10.1007/s00604-019-3904-9 |
[26] |
Liu H, Cheng Y, Chen Y Y, Xiao H B, Sui Y Y, Xie Q J, Liu R S, Yang X P. Dual-signal sandwich-type electrochemical immunoassay of galectin-3 using methylene blue and gold nanoparticles biolabels[J]. J. Electroanal. Chem., 2020, 861: 113952.
doi: 10.1016/j.jelechem.2020.113952 URL |
[27] |
Wang X Y, Chen Y, Mei L P, Wang A J, Yuan P X, Feng J J. Confining signal probe in porous PdPtCoNi@Pt-skin nanopolyhedra to construct a sandwich-type electrochemical immmunosensor for ultrasensitive detection of creatine kinase-mb[J]. Sens. Actuator B-Chem., 2020, 315: 128088.
doi: 10.1016/j.snb.2020.128088 URL |
[28] |
Zhang S, Rong F L, Guo C A P, Duan F H, He L H, Wang M H, Zhang Z H, Kang M M, Du M. Metal-organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro[J]. Coord. Chem. Rev., 2021, 439: 213948.
doi: 10.1016/j.ccr.2021.213948 URL |
[29] |
Ru J, Wang X M, Wang F B, Cui X L, Du X Z, Lu X Q. Uio series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism[J]. Ecotox. Environ. Safe., 2021, 208: 111577.
doi: 10.1016/j.ecoenv.2020.111577 URL |
[30] |
Lv M Z, Zhou W, Tavakoli H, Bautista C, Xia J F, Wang Z H, Li X J. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing[J]. Biosens. Bioelectron., 2021, 176: 112947.
doi: 10.1016/j.bios.2020.112947 URL |
[31] |
Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks[J]. Chem. Rev., 2020, 120(16): 8536-8580.
doi: 10.1021/acs.chemrev.9b00766 pmid: 32275412 |
[32] |
Su Z H, Tang D L, Yang X L, Peng Y, Wang B R, Li X Y, Chen J H, Hu Y, Qin X L. Selective and fast growth of Cds nanocrystals on zinc (ii) metal-organic framework architectures for photoelectrochemical response and electrochemical immunosensor of foot-and-mouth disease virus[J]. Microchem. J., 2022, 174: 107038.
doi: 10.1016/j.microc.2021.107038 URL |
[33] |
Cheng Y D, Datta S J, Zhou S, Jia J T, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes[J]. Chem. Soc. Rev., 2022, 51: 8300-8350.
doi: 10.1039/D2CS00031H URL |
[34] |
Tran V A, Do H H, Le V T, Vasseghian Y, Vo V, Ahn S H, Kim S Y, Lee S W. Metal-organic-framework-derived metals and metal compounds as electrocatalysts for oxygen evolution reaction: A review[J]. Int. J. Hydrogen Energy, 2022, 47(45): 19590-19608.
doi: 10.1016/j.ijhydene.2021.11.063 URL |
[35] | Shao M Z, Li Y Y, Chen M Y, Liu W D, Sun Y Z, Chu Y Y, Sun Y J, Li X Y, Zhang R Z, Zhang L B. High-efficiency electrogenerated chemiluminescence of novel Zr-based metal-organic frameworks through organic linkers regulation[J]. ChemElectroChem, 2022, 9(19): e202200866 |
[36] |
Rong S Z, Zou L N, Zhu Y, Zhang Z, Liu H F, Zhang Y C, Zhang H, Gao H M, Guan H J, Dong J, Guo Y P, Liu F H, Li X X, Pan H Z, Chang D. 2D/3D material amplification strategy for disposable label-free electrochemical immunosensor based on rGO-TEPA@Cu-MOFs@SiO2@AgNPs composites for NMP22 detection[J]. Microchem. J., 2021, 168: 106410.
doi: 10.1016/j.microc.2021.106410 URL |
[37] |
Mehmandoust M, Gumus Z P, Soylak M, Erk N. Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample[J]. Talanta, 2022, 240: 123211.
doi: 10.1016/j.talanta.2022.123211 URL |
[38] |
Li Y, Wang C B, Li Z Z, Wang M H, He L H, Zhang Z H. Zirconium-porphyrin complex as novel nanocarrier for label-free impedimetric biosensing neuron-specific enolase[J]. Sens. Actuator B-Chem., 2020, 314: 128090.
doi: 10.1016/j.snb.2020.128090 URL |
[39] |
Gu C X, Guo C P, Li Z Z, Wang M H, Zhou N, He L H, Zhang Z H, Du M. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells[J]. Biosens. Bioelectron., 2019, 134: 8-15.
doi: S0956-5663(19)30248-9 pmid: 30952013 |
[40] |
Song Y P, Xu M R, Li Z Z, He L N, Hu M Y, He L H, Zhang Z H, Du M. A bimetallic CoNi-based metal-organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances[J]. Sens. Actuator B-Chem., 2020, 311: 127927.
doi: 10.1016/j.snb.2020.127927 URL |
[41] |
Bajpai V K, Haldorai Y, Khan I, Sonwal S, Singh M P, Yadav S, Paray B A, Jan B L, Kang S M, Huh Y S, Han Y K, Shukla S. Au@Zr-based metal-organic framework composite as an immunosensing platform for determination of hepatitis b virus surface antigen[J]. Microchim. Acta, 2021, 188(11): 365.
doi: 10.1007/s00604-021-05022-6 |
[42] |
Li L Z, Liu X, Su B C, Zhang H Y, Li R, Liu Z L, Chen Q, Huang T Z, Cao H M. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum[J]. Microchem. J., 2022, 179: 107463.
doi: 10.1016/j.microc.2022.107463 URL |
[43] |
Liu H, Chen Y Y, Cheng Y, Xie Q J, Liu R S, Yang X P. Immunosensing of NT-proBNP via Cu2+-based mofs biolabeling and in situ microliter-droplet anodic stripping voltammetry[J]. Electroanalysis, 2020, 32(8): 1754-1762.
doi: 10.1002/elan.v32.8 URL |
[44] |
Liu J B, Shang Y H, Zhu Q Y, Zhang X X, Zheng J B. A voltammetric immunoassay for the carcinoembryonic antigen using silver(i)-terephthalate metal-organic frameworks containing gold nanoparticles as a signal probe[J]. Mikrochim. Acta, 2019, 186(8): 509.
doi: 10.1007/s00604-019-3638-8 pmid: 31273473 |
[45] |
Liu T Z, Hu R, Zhang X, Zhang K L, Liu Y, Zhang X B, Bai R Y, Li D, Yang Y H. Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay[J]. Anal. Chem., 2016, 88(24): 12516-12523.
doi: 10.1021/acs.analchem.6b04191 URL |
[46] |
Bai R Y, Zhang K L, Li D L, Zhang X, Liu T Z, Liu Y, Hu R, Yang Y H. Preparation of carcinoembryonic antigen immunosensor based on Au nanoparticles loaded-metal-organic frameworks[J]. Chinese J. Anal. Chem., 2017, 45(1): 48-55.
doi: 10.1016/S1872-2040(16)60988-X URL |
[47] |
Liu X B, Yue T, Qi K, Qiu Y B, Guo X P. Porous graphene based electrochemical immunosensor using Cu3(BTC)2 metal-organic framework as nonenzymatic label[J]. Talanta, 2020, 217: 121042.
doi: 10.1016/j.talanta.2020.121042 URL |
[48] |
Zhang C, Zhang D S, Ma Z F, Han H L. Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3[J]. Biosens. Bioelectron., 2019, 137: 1-7.
doi: S0956-5663(19)30341-0 pmid: 31063886 |
[49] |
Feng J J, Wang H Q, Ma Z F. Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity[J]. Microchim. Acta, 2020, 187(1): 95.
doi: 10.1007/s00604-019-4075-4 |
[50] |
Dong H, Liu S H, Liu Q, Li Y Y, Li Y Y, Zhao Z D. A dual-signal output electrochemical immunosensor based on Au-MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection[J]. Biosens. Bioelectron., 2022, 195: 113648.
doi: 10.1016/j.bios.2021.113648 URL |
[51] |
Zhang K L, Dai K, Bai R Y, Ma Y C, Deng Y, Li D L, Zhang X, Hu R, Yang Y H. A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework (MIL-101)[J]. Chinese Chem. Lett., 2019, 30(3): 664-667.
doi: 10.1016/j.cclet.2018.10.021 URL |
[52] |
Parvin S, Hashemi P, Afkhami A, Ghanei M, Bagheri H. Simultaneous determination of BoNT/A and /E using an electrochemical sandwich immunoassay based on the nanomagnetic immunosensing platform[J]. Chemosphere, 2022, 298: 134358.
doi: 10.1016/j.chemosphere.2022.134358 URL |
[53] |
Liu C, Dong J, Ning S, Hou J, Waterhouse G I N, Cheng Z, Ai S. An electrochemical immunosensor based on an etched zeolitic imidazolate framework for detection of avian leukosis virus subgroup J[J]. Microchim. Acta, 2018, 185(9): 423.
doi: 10.1007/s00604-018-2930-3 |
[54] |
Feng J J, Liang X Y, Ma Z F. New immunoprobe: Dual-labeling ZIF-8 embellished with multifunctional bovine serum albumin lamella for electrochemical immunoassay of tumor marker[J]. Biosens. Bioelectron., 2021, 175: 112853.
doi: 10.1016/j.bios.2020.112853 URL |
[55] |
Feng J J, Yao T, Chu C S, Ma Z F, Han H L. Proton-responsive annunciator based on i-motif DNA structure modified metal organic frameworks for ameliorative construction of electrochemical immunosensing interface[J]. J. Colloid Interface Sci., 2022, 608(Pt 2): 2050-2057.
doi: 10.1016/j.jcis.2021.10.139 URL |
[56] |
Li W J, Ma C Y, Song Y J, Hong C L, Qiao X W, Yin B C. Sensitive detection of carcinoembryonic antigen (CEA) by a sandwich-type electrochemical immunosensor using MOF-Ce@HA/Ag-HRP-Ab2 as a nanoprobe[J]. Nanotechnology, 2020, 31(18): 185605.
doi: 10.1088/1361-6528/ab70d3 URL |
[57] |
Han J, Zhang M F, Chen G J, Zhang Y Q, Wei Q, Zhuo Y, Xie G, Yuan R, Chen S P. Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-beta[J]. J. Mat. Chem. B, 2017, 5(42): 8330-8336.
doi: 10.1039/C7TB02240A URL |
[58] |
Liu J B, Shang Y H, Xu J Q, Chen Y, Jia Y R, Zheng J B. A novel electrochemical immunosensor for carcinoembryonic antigen based on Cu-MOFs-TB/polydopamine nanocarrier[J]. J. Electroanal. Chem., 2020, 877: 114563.
doi: 10.1016/j.jelechem.2020.114563 URL |
[59] |
Lu W, Chen Z A, Wei M, Cao X, Sun X. A three-dimensional CoNi-MOF nanosheet array-based immunosensor for sensitive monitoring of human chorionic gonadotropin with core-shell ZnNi-MOF@Nile Blue nanotags[J]. Analyst, 2021, 145(24): 8097-8103.
doi: 10.1039/d0an01648a pmid: 33084628 |
[60] |
Zhang P, Huang H, Wang N, Li H J, Shen D Z, Ma H Y. Duplex voltammetric immunoassay for the cancer biomarkers carcinoembryonic antigen and alpha-fetoprotein by using metal-organic framework probes and a glassy carbon electrode modified with thiolated polyaniline nanofibers[J]. Microchim. Acta, 2017, 184(10): 4037-4045.
doi: 10.1007/s00604-017-2437-3 URL |
[61] |
Zhao G H, Dong X, Du Y, Zhang N, Bai G Z, Wu D, Ma H M, Wang Y G, Cao W, Wei Q. Enhancing electrochemiluminescence efficiency through introducing atomically dispersed ruthenium in nickel-based metal-organic frameworks[J]. Anal. Chem., 2022, 94(29): 10557-10566.
doi: 10.1021/acs.analchem.2c02334 pmid: 35839514 |
[62] |
Wang Y G, Zhao G H, Chi H, Yang S H, Niu Q F, Wu D, Cao W, Li T D, Ma H M, Wei Q. Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay[J]. J. Am. Chem. Soc., 2021, 143(1): 504-512.
doi: 10.1021/jacs.0c12449 pmid: 33370533 |
[63] |
Wang C, Li Z H, Ju H X. Copper-doped terbium luminescent metal organic framework as an emitter and a co-reaction promoter for amplified electrochemiluminescence immunoassay[J]. Anal. Chem., 2021, 93(44): 14878-14884.
doi: 10.1021/acs.analchem.1c03988 URL |
[64] |
Song X Z, Zhao L, Zhang N, Liu L, Ren X, Ma H M, Luo C N, Li Y Y, Wei Q. Zinc-based metal-organic framework with MLCT properties as an efficient electrochemiluminescence probe for trace detection of trenbolone[J]. Anal. Chem., 2022, 94(40): 14054-14060.
doi: 10.1021/acs.analchem.2c03615 URL |
[65] | Li J S, Jia H Y, Ren X, Li Y Y, Liu L, Feng R Q, Ma H M, Wei Q. Dumbbell plate-shaped aiegen-based luminescent mof with high quantum yield as self-enhanced ECL tags: Mechanism insights and biosensing application[J]. Small, 2022, 18(13): e2106567. |
[66] |
Yang X, Yu YQ, Peng L Z, Lei Y M, Chai Y Q, Yuan R, Zhuo Y. Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of trace ctni[J]. Anal. Chem., 2018, 90(6): 3995-4002.
doi: 10.1021/acs.analchem.7b05137 pmid: 29457712 |
[67] |
Mo G C, Qin D M, Jiang X H, Zheng X F, Mo W M, Deng B Y. A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection[J]. Sens. Actuator B-Chem., 2020, 310: 127852.
doi: 10.1016/j.snb.2020.127852 URL |
[68] |
Shen C Q, Li Y, Li Y M, Wang S J, Li Y Y, Tang F, Wang P, Liu H, Li Y Y, Liu Q. A double reaction system induced electrochemiluminescence enhancement based on SnS2 QDs@MIL-101 for ultrasensitive detection of CA242[J]. Talanta, 2022, 247: 123575.
doi: 10.1016/j.talanta.2022.123575 URL |
[69] | Fang Q C, Lin Z H, Lu F S, Chen Y W, Huang X C, Gao W H. A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator[J]. Microchim. Acta, 2019, 302: 207-215. |
[70] |
Dong X, Zhao G H, Li X, Miao J C, Fang J L, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125[J]. Microchim. Acta, 2019, 186(12): 811.
doi: 10.1007/s00604-019-3969-5 |
[71] |
Wu H Y, Li Z Y, Wang Y, Li X, Zhu W H. Inhibition effect of CTAB on electrodeposition of Cu in micro via: Experimental and md simulation investigations[J]. J. Electrochem. Soc., 2019, 166(15): D816-D825.
doi: 10.1149/2.0651915jes URL |
[72] |
Qi J L, Zhang X L, Zhang Q Y, Xue Y, Meng F, Liu Y H, Yang G J. Ultrasensitive “signal-on” sandwich electrochemiluminescence immunosensor based on Pd@Au-L-cysteine enabled multiple-amplification strategy for apolipoprotein-A1 detection[J]. Microchem. J., 2022, 178: 107409.
doi: 10.1016/j.microc.2022.107409 URL |
[73] |
Ding Y P, Zhang X, Peng J J, Zheng D L, Zhang X S, Song Y B, Chen Y W, Gao W H. Ultra-sensitive electrochemiluminescence platform based on magnetic metal-organic framework for the highly efficient enrichment[J]. Sens. Actuator B-Chem., 2020, 324: 128700.
doi: 10.1016/j.snb.2020.128700 URL |
[74] | Wang F L, Zhang Q L, Zhou K, Le Y P, Liu W, Wang Y, Wang F. Effect of cetyl-trimethyl-ammonium-bromide (CTAB) and bis (3-sulfopropyl) disulfide (SPS) on the through-silicon-via (TSV) copper filling[J]. Microelectron. Eng., 2019, 217. |
[75] |
Li L, Zhao Y H, Li X J, Ma H M, Wei Q. Label-free electrochemiluminescence immunosensor based on Ce-MOF@g-C3N4/Au nanocomposite for detection of n-terminal pro-B-type natriuretic peptide[J]. J. Electroanal. Chem., 2019, 847: 113222.
doi: 10.1016/j.jelechem.2019.113222 URL |
[76] |
Xin W L, Jiang L F, Zong L P, Zeng H B, Shu G F, Marks R, Zhang X J, Shan D. MoS2 quantum dots-combined zirconium-metalloporphyrin frameworks: Synergistic effect on electron transfer and application for bioassay[J]. Sens. Actuator B-Chem., 2018, 273: 566-573.
doi: 10.1016/j.snb.2018.06.090 URL |
[77] |
Xiong X, Zhang Y, Wang Y F, Sha H F, Jia N Q. One-step electrochemiluminescence immunoassay for breast cancer biomarker CA 15-3 based on Ru(bpy)62+-coated UIO-66-NH2 metal-organic framework[J]. Sens. Actuator B-Chem., 2019, 297: 126812.
doi: 10.1016/j.snb.2019.126812 URL |
[78] |
Qin X L, Zhang X H, Wang M H, Dong Y F, Liu J J, Zhu Z W, Li M X, Yang D, Shao Y H. Fabrication of tris(bipyridine)ruthenium(ii)-functionalized metal-organic framework thin films by electrochemically assisted self-assembly technique for electrochemiluminescent immunoassay[J]. Anal. Chem., 2018, 90(19): 11622-11628.
doi: 10.1021/acs.analchem.8b03186 pmid: 30207703 |
[79] |
Zhao G H, Wang Y G, Li X J, Dong X, Wang H, Du B, Cao W, Wei Q. Quenching electrochemiluminescence immunosensor based on resonance energy transfer between ruthenium (ii) complex incorporated in the UiO-67 metal-organic framework and gold nanoparticles for insulin detection[J]. ACS Appl. Mater. Interfaces, 2018, 10(27): 22932-22938.
doi: 10.1021/acsami.8b04786 URL |
[80] |
Qin X L, Dong Y F, Wang M H, Zhu Z W, Li M X, Yang D, Shao Y H. In situ growing triethanolamine-functionalized metal-organic frameworks on two-dimensional carbon nanosheets for electrochemiluminescent immunoassay[J]. ACS Sens., 2019, 4(9): 2351-2357.
doi: 10.1021/acssensors.9b00914 URL |
[1] | 李春艳, 张蕊, 巴笑杰, 姜晓乐, 阳耀月. 氮掺杂多孔碳包覆铁纳米粒子催化剂用于高效碱性介质中氧还原反应[J]. 电化学(中英文), 2023, 29(5): 2210241-. |
[2] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[3] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[4] | 胡霞,申有名,沈广宇. 基于铁氰化钾电子媒介体及醛基吡啶盐的电化学免疫传感器[J]. 电化学(中英文), 2018, 24(2): 154-159. |
[5] | 李亚峰,孙晴晴,魏明灯. 金属有机框架在染料敏化太阳能电池中的应用[J]. 电化学(中英文), 2016, 22(4): 332-339. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||