[1] |
Lu J, Chen Z W, Pan F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews, 2018,1(1):35-53.
|
[2] |
Wang D W, Kou R H, Ren Y, et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes[J]. Advanced Materials, 2017,29(39):1606715-1606722.
|
[3] |
Manthiram A, Knight J C, Myung S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives[J]. Advanced Energy Materials, 2016,6(1):1501010-1501032.
|
[4] |
Jiang D, Jiang Y Y, Li Z M, et al. Optical imaging of phase transition and Li-Ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. Journal of the American Chemical Society, 2017,139(1):186-192.
doi: 10.1021/jacs.6b08923
URL
pmid: 27959535
|
[5] |
Genieser R, Ferrari S, Loveridge M, et al. Lithium ion batteries (NMC/graphite) cycling at 80oC: Different electrolytes and related degradation mechanism [J]. Journal of Power Sources, 2018,373:172-183.
doi: 10.1016/j.jpowsour.2017.11.014
URL
|
[6] |
Li D, Danilov D L, Gao L, et al. Degradation mechanisms of C6/LiFePO4 batteries: experimental analyses of cyclinginduced aging[J]. Electrochimica Acta, 2016,210:445-455.
doi: 10.1016/j.electacta.2016.05.091
URL
|
[7] |
Liu S Y, Su J M, Zhao J Y, et al. Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures[J]. Journal of Power Sources, 2018,393:92-98.
|
[8] |
Chen T, Li X, Wang H, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. Journal of Power Sources, 2018,374:1-11.
|
[9] |
Andre D, Meiler M, Steiner K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation[J]. Journal of Power Sources, 2013,196(12):5334-5341.
|
[10] |
Michalak B, Berkes B B, Sommer H, et al. Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements[J]. Analytical Chemistry, 2016,88(5):2877-2883.
doi: 10.1021/acs.analchem.5b04696
URL
pmid: 26813026
|
[11] |
Zheng H H, Yang R Z, Liu G, et al. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode[J]. The Journal of Physical Chemistry C, 2012,116(7):4875-4882.
|
[12] |
Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of Power Sources, 2002,112(1):222-230.
doi: 10.1016/S0378-7753(02)00363-4
URL
|
[13] |
Verma P, Maire P, Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010,55:6332-6341.
doi: 10.1016/j.electacta.2010.05.072
URL
|
[14] |
Andersson A M, Abraham D P, Haasch R, et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of The Electrochemical Society, 2002,149(10):A1358-A1369.
|
[15] |
Edstrom K, Gustafsson T, Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta, 2004,50:397-403.
doi: 10.1016/j.electacta.2004.03.049
URL
|
[16] |
Castel E, Berg E J, El Kazzi M, et al. Differential electrochemical mass spectrometry study of the interface of xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, and Mn) material as a positive electrode in Li-ion batteries[J]. Chemistry of Materials, 2014,26(17):5051-5057.
doi: 10.1021/cm502201z
URL
|
[17] |
Watanabe S, Kinoshita M, Hosokawa T, et al. Capacity fading of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in chargeedischarge cycling on the suppression of the micro-crack generation of LiAlyNi1-x-yCoxO2 particle)[J]. Journal of Power Sources, 2014,260:50-56.
doi: 10.1016/j.jpowsour.2014.02.103
URL
|
[18] |
Zou L F, Zhao W G, Liu Z Y, et al. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials[J]. ACS Energy Letters, 2018,3(10):2433-2440.
doi: 10.1021/acsenergylett.8b01490
URL
|
[19] |
Abraham D P, Twesten R D, Balasubramanian M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells[J]. Eletrochemistry Communications, 2002,4(8):620-625.
|
[20] |
Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-Ion batteries: A comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials, 2018,8(15):1703154.
|
[21] |
Guilmard M. Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2[J]. Solid State Ionics, 2003,160(1/2):39-50.
|
[22] |
Nonaka T, Okuda C, Seno Y, et al. In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2006,162(2):1329-1335.
|
[23] |
Shiraishi Y, Nakai I, Tsubata T, et al. Effect of the elevated temperature on the local structure of lithium manganese oxide studied by in situ XAFS analysis[J]. Journal of Power Sources, 1999,81:571-574.
|
[24] |
Wang Z Y, Zhang Y, Chen B J, et al. Study on decrystallization of cathode material and decomposition of electrolyte in LiNi1/3Co1/3Mn1/3O2-based cells[J]. Journal of Solid State Electrochemistry, 2014,18(6):1757-1762.
|