电化学(中英文) ›› 2022, Vol. 28 ›› Issue (12): 2219011. doi: 10.13208/j.electrochem.2219011
所属专题: “下一代二次电池”专题文章
郭瑞琪1,2, 吴锋1,2, 王欣然1,2,*(), 白莹1,*(), 吴川1,2,*()
收稿日期:
2022-09-21
修回日期:
2022-10-25
出版日期:
2022-12-28
发布日期:
2022-12-28
Rui-Qi Guo1,2, Feng Wu1,2, Xin-Ran Wang1,2,*(), Ying Bai1,*(), Chuan Wu1,2,*()
Received:
2022-09-21
Revised:
2022-10-25
Published:
2022-12-28
Online:
2022-12-28
Contact:
*Xin-Ran Wang: Tel: (86-10)68918766, E-mail: 摘要:
全球能源结构转型推动了电化学储能系统的飞速发展,提高能量密度是发展新型二次电池的重要方向和研究热点。然而,受限于传统的嵌入式反应,锂离子电池在能量密度上已经逐渐达到极限。要发展更高能量密度的新型二次电池,需要在新理论、新材料和新体系上进行突破。基于此,本文总结了20年来多电子反应材料概念的形成、理论的发展、材料创制的历程。在“轻元素多电子反应”和“多离子效应”核心设计准则的指导下,具有上述特征的电极材料与电池结构不断发展迭代,引领了高能量密度电池的发展方向。从阳离子氧化还原到阴阳离子协同氧化还原,从嵌入式反应到合金化反应,从传统有机液态体系到电池固态化,本文梳理了典型的多电子反应正负极材料的结构特性、体系创新和工程化前景,剖析了多电子反应电极材料的瓶颈问题,并分析了电池固态化发展所面临的挑战。最后,对高能量密度电池的未来发展趋势和难点进行了归纳与展望。
郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011.
Rui-Qi Guo, Feng Wu, Xin-Ran Wang, Ying Bai, Chuan Wu. Multi-Electron Reaction-Boosted High Energy Density Batteries: Material and System Innovation[J]. Journal of Electrochemistry, 2022, 28(12): 2219011.
Electrode type | Material type | Designing strategy | Cycling performance | Capacity retention or voltage hysteresis (Li|Li cells) | Ref. |
---|---|---|---|---|---|
Cathode | LiNixCoyMn1-x-yO2 | “Pillar ions” doping | 162.5 mAh·g-1 at 1 C after 100 cycles | 96.2% | [10] |
Concentration gradient regulation | 158.7 mAh·g-1 at 1 C after 100 cycles | 92.7% | [12] | ||
Li- and Mn-rich based | Surface modification | 202 mAh·g-1 at 1 C after 100 cycles | 94.0% | [18] | |
Doping modification | 222.2 mAh·g-1 at 1 C after 200 cycles | 89.2% | [19] | ||
Anode | Silicon-based | Nano-crystallization by vapor phase growth | 3500 mAh·g-1 at 0.2 C after 20 cycles | / | [28] |
Coating by dual-carbon shell | ~1350 mAh·g-1 at 0.2 C after 1000 cycles | 75.2% | [29] | ||
Li metal | Composite with carbon fiber and Ag coating | Cycled over 400 h at 1 mA·cm-2 with an area capacity of 1 mAh·cm-2 | 80 mV | [33] | |
PVDF-HFP coating | Cycled over 1600 h at 1 mA·cm-2 with an area capacity of 1 mAh·cm-2 | 20 mV | [34] |
[1] | Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26: 443-463. |
[2] | Rudola A, Wright C J, Barker J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: A materials chemistry perspective[J]. Energy Mater. Adv., 2021, 2021: 9798460. |
[3] | Li W J, Xu H Y, Yang Q, Li J M, Zhang Z Y, Wang S B, Peng J Y, Zhang B, Chen X L, Zhang Z, Yang M, Zhao Y, Geng Y Y, Huang W S, Ding Z P, Zhang L, Tian Q Y, Yu H G, Li H. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Sci. Technol., 2020, 9: 448-478. |
[4] |
Gao M D, Li H, Xu L, Xue Q, Wang X N, Bai Y, Wu C. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. J. Energy Chem., 2021, 59: 666-687.
doi: 10.1016/j.jechem.2020.11.034 URL |
[5] |
Shen Y B, Zhang Y T, Han S J, Wang J W, Peng Z Q, Chen L W. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674-1689.
doi: 10.1016/j.joule.2018.06.021 URL |
[6] |
Wang X R, Tan G Q, Bai Y, Wu F, Wu C. Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective[J]. Electrochem. Energy Rev., 2021, 4(1): 35-66.
doi: 10.1007/s41918-020-00073-4 URL |
[7] |
Zhang C Z, Liu Z, Wu F, Lin L J, Qi F. Electrochemical generation of ferrate on SnO2-Sb2O3/Ti electrodes in strong concentration basic condition[J]. Electrochem. Commun., 2004, 6(11): 1104-1109.
doi: 10.1016/j.elecom.2004.08.011 URL |
[8] |
Jung C H, Shim H, Eum D, Hong S H. Challenges and recent progress in LiNixCoyMn1-x-yO2 (NCM) cathodes for lithium ion batteries[J]. J. Korean Ceram. Soc., 2021, 58(1): 1-27.
doi: 10.1007/s43207-020-00098-x URL |
[9] |
Sun H H, Choi W, Lee J K, Oh I H, Jung H G. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. J. Power Sources, 2015, 275: 877-883.
doi: 10.1016/j.jpowsour.2014.11.075 URL |
[10] |
Wang L F, Wang R, Wang J Y, Xu R, Wang X D, Zhan C. Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials[J]. ACS Appl. Mater. Interfaces, 2021, 13(7): 8324-8336.
doi: 10.1021/acsami.0c20100 URL |
[11] |
Noh H J, Chen Z, Yoon C S, Lu J, Amine K, Sun Y K. Cathode material with nanorod structure an application for advanced high-energy and safe lithium batteries[J]. Chem. Mater., 2013, 25(10): 2109-2115.
doi: 10.1021/cm4006772 URL |
[12] |
Zhang J C, Yang Z Z, Gao R, Gu L, Hu Z B, Liu X F. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Appl. Mater. Interfaces, 2017, 9(35): 29794-29803.
doi: 10.1021/acsami.7b08802 URL |
[13] |
Jiang M, Danilov D L, Eichel R A, Notten P H L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Adv. Energy Mater., 2021, 11(48): 2103005.
doi: 10.1002/aenm.202103005 URL |
[14] |
Zhao H C, Bai Y, Jin H F, Zhou J, Wang X R, Wu C. Unveiling thermal decomposition kinetics of single-crystalline Ni-rich LiNi0.88Co0.07Mn0.05O2 cathode for safe lithium-ion batteries[J]. Chem. Eng. J., 2022, 435: 134927.
doi: 10.1016/j.cej.2022.134927 URL |
[15] |
Yu H J, Zhou H S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. J. Phys. Chem. Lett., 2013, 4(8): 1268-1280.
doi: 10.1021/jz400032v pmid: 26282140 |
[16] |
Johnson C S, Li N, Lefief C, Thackeray M M. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 oC[J]. Electrochem. Commun., 2007, 9(4): 787-795.
doi: 10.1016/j.elecom.2006.11.006 URL |
[17] |
Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1): 760-767.
doi: 10.1021/nn305065u pmid: 23237664 |
[18] |
Hu S L, Li Y, Chen Y H, Peng J M, Zhou T F, Pang W K, Didier C, Peterson V K, Wang H Q, Li Q Y, Guo Z P. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode[J]. Adv. Energy Mater., 2019, 9(34): 1901795.
doi: 10.1002/aenm.201901795 URL |
[19] | Yu R Z, Banis M N, Wang C H, Wu B, Huang Y, Cao S, Li J J, Jamil S, Lin X T, Zhao F P, Lin W H, Chang B B, Yang X K, Huang H, Wang X Y, Sun X L. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides[J]. Energy Storage Mater., 2021, 37: 509-520. |
[20] |
Zuo Y X, Li B A, Jiang N, Chu W S, Zhang H, Zou R Q, Xia D G. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Adv. Mater., 2018, 30(16): 1707255.
doi: 10.1002/adma.201707255 URL |
[21] | Wang Z K, Li Y, Ji H Q, Zhou J Q, Qian T, Yan C L. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2022: 2203699. |
[22] | Yuan K G, Wang A B, Cao G P, Yang Y S. Preparation and electrochemical performance of a novel lithium battery cathode material polysulfurpolyaniline[J]. Chem. J. Chinese U., 2005, 26(11):2117-2119. |
[23] |
Wang M J, Wang W K, Wang A B, Yuan K G, Miao L X, Zhang X L, Huang Y Q, Yu Z B, Qiu J Y. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chem. Commun., 2013, 49(87): 10263-10265.
doi: 10.1039/c3cc45412f URL |
[24] |
Zhao C R, Wang W K, Yu Z B, Zhang H, Wang A B, Yang Y S. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. J. Mater. Chem., 2010, 20(5): 976-980.
doi: 10.1039/B911913B URL |
[25] | Yu Z B, Wang W K, Wang A B, Yuan K G, Yang Y S. Effect of electrolyte on electrochemical performance of sulfur electrode[J]. Battery Bimon., 2006, 36(1): 3-4. |
[26] | Wang W K, Yu Z B, Yuan K G, Wang A B, Yang Y S. Key materials of high energy lithium sulfur batteries[J]. Prog. Chem., 2011, 23(2-3): 540-547. |
[27] |
Ge M, Cao C, Biesold G M, Sewell C D, Hao S M, Huang J, Zhang W, Lai Y, Lin Z. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Adv. Mater., 2021, 33(16): 2004577.
doi: 10.1002/adma.202004577 URL |
[28] |
Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires[J]. Nat. Nanotechnol., 2008, 3(1): 31-35.
doi: 10.1038/nnano.2007.411 pmid: 18654447 |
[29] |
Chen S, Shen L, van Aken P A, Maier J, Yu Y. Dual-fun-ctionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Adv. Mater., 2017, 29(21): 1605650.
doi: 10.1002/adma.201605650 URL |
[30] |
Zhang J G, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes[J]. Chem. Rev., 2020, 120(24): 13312-13348.
doi: 10.1021/acs.chemrev.0c00275 URL |
[31] |
Liu Y, Huang S B, Meng Q Q, Fan Y C, Wang B Y, Yang Y S, Cao G P, Zhang H. In-situ growth of Ag particles anchored Cu foam scaffold for dendrite-free lithium metal anode[J]. J. Alloy. Compd., 2021, 885: 160882.
doi: 10.1016/j.jallcom.2021.160882 URL |
[32] | Meng Q Q, Deng B, Zhang H M, Wang B Y, Zhang W F, Wen Y H, Ming H, Zhu X Y, Guan Y P, Xiang Y, Li M, Cao G P, Yang Y S, Peng H L, Zhang H, Huang Y Q. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene[J]. Energy Storage Mater., 2019, 16: 419-425. |
[33] |
Zhang R, Chen X, Shen X, Zhang X Q, Chen X R, Cheng X B, Yan C, Zhao C Z, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777.
doi: 10.1016/j.joule.2018.02.001 URL |
[34] | Zhang K, Wu F, Zhang K, Weng S T, Wang X R, Gao M D, Sun Y H, Cao D, Bai Y, Xu H J, Wang X F, Wu C. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Mater., 2021, 41: 485-494. |
[35] | Gao H, Grundish N S, Zhao Y, Zhou A, Goodenough J B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries[J]. Energy Mater. Adv., 2021, 2021: 1932952. |
[36] | Wu F, Zhang K, Liu Y R, Gao H C, Bai Y, Wang X R, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects[J]. Energy Storage Mater., 2020, 33: 26-54. |
[37] |
Zhang K, Wu F, Wang X R, Zheng L M, Yang X Y, Zhao H C, Sun Y H, Zhao W B, Bai Y, Wu C A. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries[J]. Adv. Funct. Mater., 2022, 32(5): 2107764.
doi: 10.1002/adfm.202107764 URL |
[38] |
Zhang K, Wu F, Wang X R, Weng S T, Yang X Y, Zhao H C, Guo R Q, Sun Y H, Zhao W B, Song T L, Wang X F, Bai Y, Wu C. 8.5 μm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Adv. Energy Mater., 2022, 12(24): 2200368.
doi: 10.1002/aenm.202200368 URL |
[39] |
Cheng S H S, Liu C, Zhu F Y, Zhao L, Fan R, Chung C Y, Tang J N, Zeng X R, He Y B. (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery[J]. Nano Energy, 2021, 80: 105562.
doi: 10.1016/j.nanoen.2020.105562 URL |
[40] |
Liu Y J, He P, Zhou H S. Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges[J]. Adv. Energy Mater., 2018, 8(4): 1701602.
doi: 10.1002/aenm.201701602 URL |
[41] |
Li S M, Chen Z F, Zhang W T, Li S N, Pan F. High-thro-ughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries[J]. Nano Energy, 2022, 102: 107640.
doi: 10.1016/j.nanoen.2022.107640 URL |
[42] | Guo Q Y, Xu F L, Shen L, Deng S G, Wang Z Y, Li M Q, Yao X Y. 20 μm-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries[J]. Energy Mater. Adv., 2022: 9753506. |
[43] |
Zhu L, Wang Y M, Wu Y M, Feng W L, Liu Z L, Tang W P, Wang X W, Xia Y Y. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability[J]. Adv. Funct. Mater., 2022, 32(29): 2201136.
doi: 10.1002/adfm.202201136 URL |
[44] |
Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electroly-tes[J]. Adv. Mater., 2021, 33(6): 2000751.
doi: 10.1002/adma.202000751 URL |
[45] |
Nikodimos Y, Huang C J, Taklu B W, Su W N, Hwang B J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ. Sci., 2022, 15: 991-1033.
doi: 10.1039/D1EE03032A URL |
[46] |
Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Adv. Mater., 2019, 31(44): 1901131.
doi: 10.1002/adma.201901131 URL |
[47] |
Lee J, Lee T, Char K, Kim K J, Choi J W. Issues and advances in scaling up sulfide-based all-solid-state batteries[J]. Accounts. Chem. Res., 2021, 54(17): 3390-3402.
doi: 10.1021/acs.accounts.1c00333 URL |
[48] |
Sun N, Song Y J, Liu Q S, Zhao W, Zhang F, Ren L P, Chen M, Zhou Z N, Xu Z H, Lou S F. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide-based all-solid-state batteries at 4.4 V[J]. Adv. Energy Mater., 2022, 12(29): 2200682.
doi: 10.1002/aenm.202200682 URL |
[49] | Liang Y H, Liu H, Wang G X, Wang C, Ni Y, Nan C W, Fan L Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): e12292. |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[4] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[5] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[6] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[7] | 宋亚杰, 孙雪, 任丽萍, 赵雷, 孔凡鹏, 王家钧. 同步辐射表征技术在金属空气电池研究中的应用[J]. 电化学(中英文), 2022, 28(3): 2108461-. |
[8] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[9] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[10] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[11] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[12] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[13] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[14] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
[15] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||