电化学(中英文) ›› 2022, Vol. 28 ›› Issue (12): 2219013. doi: 10.13208/j.electrochem.2219013
所属专题: “下一代二次电池”专题文章
• 综述 • 上一篇
李西尧1, 赵长欣1, 李博权2,3,*(), 黄佳琦2,3, 张强1,*()
收稿日期:
2022-12-08
修回日期:
2022-12-02
出版日期:
2022-12-28
发布日期:
2022-12-28
Xi-Yao Li1, Chang-Xin Zhao1, Bo-Quan Li2,3,*(), Jia-Qi Huang2,3, Qiang Zhang1,*()
Received:
2022-12-08
Revised:
2022-12-02
Published:
2022-12-28
Online:
2022-12-28
Contact:
*Tel: (86-10) 62789041, E-mail: 摘要:
锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系,其中高比容量的硫正极提供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了S/C正极和SPAN正极的最新研究进展。首先,简要介绍了两种正极的工作原理并进行了比较。S/C正极发生固-液-固多相转化反应,充放电表现为双平台特征。与之相比,SPAN正极发生固-固反应,充放电曲线为单平台。然后,对两种正极所面临的挑战和目前报道的优化策略进行了系统的分析与讨论。对于S/C正极,主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还原介体调控;对于SPAN正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介体调控。最后,在电池尺度上对S/C正极和SPAN正极进行了综合比较,并对基于S/C正极和SPAN正极的锂硫电池在未来所面对的机遇与挑战进行了展望。
李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013.
Xi-Yao Li, Chang-Xin Zhao, Bo-Quan Li, Jia-Qi Huang, Qiang Zhang. Advances on Composite Cathodes for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2022, 28(12): 2219013.
Component | Sulfur loading (mgS·cm-2) | Specific capacity(mAh·g-1) | Cycling lifespan | Reference | |
---|---|---|---|---|---|
S/C cathode | G@ppy-por | 5.0 | 940 @0.2 C | 70 @0.2 C | Zhao et al.[ |
MoS2 with TEA | 4.0 | 988 @0.3 C | 100 @0.3 C | Li et al.[ | |
DPDSe | 5.0 | 924 @0.1 C | 55 @0.1 C | Zhao et al.[ | |
LPC | 4.0 | 1001 @0.1 C | 100 @0.1 C | Feng et al.[ | |
7TiN:3TiO2-G | 1.2 | 800 @1.0 C | 2000 @1.0 C | Zhou et al.[ | |
Co4N/NG | 4.1 | 1109 @0.5 C | 150 @0.5 C | Zhao et al.[ | |
SPAN cathode | Se0.06SPAN | 1 ~ 3 | 1240 @0.26 C | 800 @0.26 C | Chen et al.[ |
BEAQ | 1.5 | 1109 @1.0 C | 160 @1.0 C | Zhao et al.[ | |
Fibrous SPAN | 0.672 | 600 @4.0 C | 1000 @4.0 C | Frey et al.[ | |
SPAN-CNT20 | 0.9 ~ 1.1 | 1106 @1.0 C | 500 @1.0 C | Razzaq et al.[ | |
SPAN/CNT-12 | 2.0 | 1180 @0.48 C | 1000 @0.48 C | Wang et al.[ | |
Te0.04S0.96@pPAN | 3.11 | 870 @0.12 C | 100 @0.12 C | Li et al.[ |
[1] | Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y, Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on dual-atom sites for high-performance lithium-sulfur batteries[J]. Small Struct., 2022: 2200205. |
[2] |
Wang Y, Lv Y, Su Y B, Chen L Q, Li H, Wu F. 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries[J]. Nano Energy, 2021, 90: 106589.
doi: 10.1016/j.nanoen.2021.106589 URL |
[3] |
Wu F, Liu L L, Wang S, Xu J R, Lu P S, Yan W L, Peng J, Wu D X, Li H. Solid state ionics -selected topics and new directions[J]. Prog. Mater. Sci., 2022, 126: 100921.
doi: 10.1016/j.pmatsci.2022.100921 URL |
[4] |
Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chem. Rev., 2022, 122(12): 10970-11021.
doi: 10.1021/acs.chemrev.1c00904 URL |
[5] |
Wang Y, Wang Z X, Wu D X, Niu Q H, Lu P S, Ma T H, Su Y B, Chen L Q, Li H, Wu F. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery[J]. eScience, 2022, 2(5): 537-545.
doi: 10.1016/j.esci.2022.06.001 URL |
[6] |
Ye G, Zhao M, Hou L P, Chen W J, Zhang X Q, Li B Q, Huang J Q. Evaluation on a 400 Wh·kg-1 lithium-sulfur pouch cell[J]. J. Energy Chem., 2022, 66: 24-29.
doi: 10.1016/j.jechem.2021.07.010 URL |
[7] |
Wang J C, Zhang Z Y, Han J F, Wang X F, Chen L Q, Li H, Wu F. Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes[J]. Nano Energy, 2022, 100: 107528.
doi: 10.1016/j.nanoen.2022.107528 URL |
[8] |
Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chem. Soc. Rev., 2017, 46(17): 5237-5288.
doi: 10.1039/C7CS00139H URL |
[9] | Yao N P, Heredy L A, Saunders R C. Secondary lithium-sulfur battery[J]. J. Electrochem. Soc., 1970, 117: C247. |
[10] |
Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y, Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, Xiong J. In-situ/operando Raman techniques in lithium-sulfur batteries[J]. Small Struct., 2022, 3(3): 2100170.
doi: 10.1002/sstr.202100170 URL |
[11] |
Hou L P, Yao L Y, Bi C X, Xie J, Li B Q, Huang J Q, Zhang X Q. High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium-sulfur batteries[J]. J. Energy Chem., 2022, 68: 300-305.
doi: 10.1016/j.jechem.2021.12.024 URL |
[12] |
Song Y W, Peng Y Q, Zhao M, Lu Y, Liu J N, Li B Q, Zhang Q. Understanding the impedance response of lithium polysulfide symmetric cells[J]. Small Sci., 2021, 1(11): 2100042.
doi: 10.1002/smsc.202100042 URL |
[13] | Cheng X B, Yan C, Huang J Q, Li P, Zhu L, Zhao L, Zhang Y, Zhu W, Yang S T, Zhang Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection[J]. Energy Storage Mater., 2017, 6: 18-25. |
[14] |
Kong L, Jin Q, Zhang X T, Li B Q, Chen J X, Zhu W C, Huang J Q, Zhang Q. Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2019, 39: 17-22.
doi: 10.1016/j.jechem.2018.12.012 URL |
[15] |
Chen W J, Li B Q, Zhao C X, Zhao M, Yuan T Q, Sun R C, Huang J Q, Zhang Q. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angew. Chem. Int. Ed., 2020, 59(27): 10732-10745.
doi: 10.1002/anie.201912701 URL |
[16] |
Cheng Q, Chen Z X, Li X Y, Hou L P, Bi C X, Zhang X Q, Huang J Q, Li B Q. Constructing a 700 Wh·kg-1-level rechargeable lithium-sulfur pouch cell[J]. J. Energy Chem., 2023, 76: 181-186.
doi: 10.1016/j.jechem.2022.09.029 URL |
[17] |
Holoubek J, Liu H D, Wu Z H, Yin Y J, Xing X, Cai G R, Yu S C, Zhou H Y, Pascal T A, Chen Z, Liu P. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nat. Energy, 2021, 6(3): 303-313.
doi: 10.1038/s41560-021-00783-z URL |
[18] |
Zhao M, Peng Y Q, Li B Q, Zhang X Q, Huang J Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 56: 203-208.
doi: 10.1016/j.jechem.2020.07.054 URL |
[19] |
Wang J L, Yang J, Xie J Y, Xu N X, Li Y. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochem. Commun., 2002, 4(6): 499-502.
doi: 10.1016/S1388-2481(02)00358-2 URL |
[20] |
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
doi: 10.1038/nmat2460 URL |
[21] |
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Recharge-able lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v pmid: 25026475 |
[22] |
Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J. Am. Chem. Soc., 2022, 144(23): 10119-10132.
doi: 10.1021/jacs.2c02668 pmid: 35653701 |
[23] |
Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(22): 1705590.
doi: 10.1002/adma.201705590 URL |
[24] |
Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W, Dong Q F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries[J]. Chem, 2020, 6(10): 2533-2557.
doi: 10.1016/j.chempr.2020.06.032 URL |
[25] |
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. J. Phys. Chem. Lett., 2014, 5(5): 915-918.
doi: 10.1021/jz500222f pmid: 26274088 |
[26] |
Wang J L, Yang J, Xie J Y, Xu N X. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Adv. Mater., 2002, 14(13-14): 963-965.
doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P URL |
[27] |
Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yang J, Wang J L, Nuli Y N. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery[J]. Electrochim. Acta, 2018, 282: 555-562.
doi: 10.1016/j.electacta.2018.06.093 URL |
[28] |
Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W, Abou-Hamad E, Emwas A H, Cavallo L, Li L J, Ming J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Lett., 2018, 3(12): 2899-2907.
doi: 10.1021/acsenergylett.8b01945 URL |
[29] |
Fanous J, Wegner M, Grimminger J, Andresen Ä, Buchmeiser M R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for re-chargeable lithium batteries[J]. Chem. Mater., 2011, 23(22): 5024-5028.
doi: 10.1021/cm202467u URL |
[30] |
Zhang S S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery[J]. Energies, 2014, 7(7): 4588-4600.
doi: 10.3390/en7074588 URL |
[31] |
Warneke S, Hintennach A, Buchmeiser M R. Communication—influence of carbonate-based electrolyte composition on cell performance of span-based lithium-sulfur batteries[J]. J. Electrochem. Soc., 2018, 165(10): A2093.
doi: 10.1149/2.0361810jes URL |
[32] | Yang H J, Naveed A, Li Q Y, Guo C, Chen J H, Lei J Y, Yang J, Nuli Y N, Wang J L. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode[J]. Energy Storage Mater., 2018, 15: 299-307. |
[33] |
Li Q Y, Yang H J, Xie L S, Yang J, Nuli Y N, Wang J L. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries[J]. Chem. Commun., 2016, 52(92): 13479-13482.
doi: 10.1039/C6CC07250J URL |
[34] |
Wei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. J. Am. Chem. Soc., 2015, 137(37): 12143-12152.
doi: 10.1021/jacs.5b08113 pmid: 26325146 |
[35] |
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12636-12652.
doi: 10.1002/anie.201909339 pmid: 31490599 |
[36] |
Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260.
doi: 10.1002/aenm.201700260 URL |
[37] | Li X Y, Feng S, Zhao M, Zhao C X, Chen X, Li B Q, Huang J Q, Zhang Q. Surface gelation on disulfide electrocatalysts in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2022, 61(7): e202114671. |
[38] | Wang Z K, Li Y, Ji H Q, Zhou J Q, Qian T, Yan C L. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(47). |
[39] |
Feng S, Singh R K, Fu Y C, Li Z, Wang Y L, Bao J, Xu Z J, Li G S, Anderson C, Shi L L, Lin Y H, Khalifah P G, Wang W, Liu J, Xiao J, Lu D P. Low-tortuous and dense single-particle-layer electrode for high-energy lithium-sulfur batteries[J]. Energy Environ. Sci., 2022, 15(9): 3842-3853.
doi: 10.1039/D2EE01442D URL |
[40] |
Zhao C X, Li X Y, Zhao M, Chen Z X, Song Y W, Chen W J, Liu J N, Wang B, Zhang X Q, Chen C M, Li B Q, Huang J Q, Zhang Q. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2021, 143(47): 19865-19872.
doi: 10.1021/jacs.1c09107 URL |
[41] |
Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Redox comediation with organopolysulfides in working lithium-sulfur batteries[J]. Chem, 2020, 6(12): 3297-3311.
doi: 10.1016/j.chempr.2020.09.015 URL |
[42] |
Zhao M Q, Peng H J, Tian G L, Zhang Q, Huang J Q, Cheng X B, Tang C, Wei F. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(41): 7051-7058.
doi: 10.1002/adma.201402488 URL |
[43] |
Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi L B, Browning N D, Zhang J G, Graff G L, Liu J, Xiao J. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes[J]. Adv. Energy Mater., 2015, 5(16): 1402290.
doi: 10.1002/aenm.201402290 URL |
[44] |
Zhang S J, Zhang Y S, Shao G S, Zhang P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions[J]. Nano Res., 2021, 14(11): 3942-3951.
doi: 10.1007/s12274-021-3319-x URL |
[45] |
Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density[J]. Nat. Commun., 2019, 10: 4597.
doi: 10.1038/s41467-019-12542-6 pmid: 31601812 |
[46] |
Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307.
doi: 10.1016/j.nanoen.2019.104307 URL |
[47] |
Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(23): 1707483.
doi: 10.1002/adma.201707483 URL |
[48] |
Liu X, Huang J Q, Zhang Q, Mai L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29(20): 1601759.
doi: 10.1002/adma.201601759 URL |
[49] |
Geng C N, Hua W X, Wang D W, Ling G W, Zhang C, Yang Q H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques[J]. SusMat, 2021, 1(1): 51-65.
doi: 10.1002/sus2.5 URL |
[50] |
Al Salem H, Babu G, V. Rao C, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545.
doi: 10.1021/jacs.5b04472 pmid: 26331670 |
[51] |
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.
doi: 10.1039/C7EE01430A URL |
[52] |
Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He Y B, Zhang Q F, Kang F Y, Lü W, Yang Q H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(32): 2000315.
doi: 10.1002/adma.202000315 URL |
[53] |
Zhao M, Peng H J, Li B Q, Chen X, Xie J, Liu X, Zhang Q, Huang J Q. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion[J]. Angew. Chem. Int. Ed., 2020, 59(23): 9011-9017.
doi: 10.1002/anie.202003136 pmid: 32203631 |
[54] |
Xue W J, Shi Z, Suo L M, Wang C, Wang Z A, Wang H Z, So K P, Maurano A, Yu D W, Chen Y M, Qie L, Zhu Z, Xu G Y, Kong J, Li J. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nat. Energy, 2019, 4(5): 374-382.
doi: 10.1038/s41560-019-0351-0 URL |
[55] |
Li X Y, Feng S, Zhao C X, Cheng Q, Chen Z X, Sun S Y, Chen X, Zhang X Q, Li B Q, Huang J Q, Zhang Q. Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2022, 144(32): 14638-14646.
doi: 10.1021/jacs.2c04176 URL |
[56] |
Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q. Direct intermediate regulation enabled by sulfur containers in working lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(49): 22150-22155.
doi: 10.1002/anie.202008911 URL |
[57] |
Li X Y, Zhang Q. One stone two birds: Dual-effect kinetic regulation strategy for practical lithium-sulfur batteries[J]. J. Energy Chem., 2022, 65: 302-303.
doi: 10.1016/j.jechem.2021.05.039 URL |
[58] |
Zhao M, Chen X, Li X Y, Li B Q, Huang J Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(13): 2007298.
doi: 10.1002/adma.202007298 URL |
[59] |
Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
doi: 10.1016/j.esci.2021.08.001 URL |
[60] |
Chen X, Peng L F, Wang L H, Yang J Q, Hao Z X, Xiang J W, Yuan K, Huang Y H, Shan B, Yuan L X, Xie J. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nat. Commun., 2019, 10: 1021.
doi: 10.1038/s41467-019-08818-6 pmid: 30833552 |
[61] | Zhao C X, Chen W J, Zhao M, Song Y W, Liu J N, Li B Q, Yuan T, Chen C M, Zhang Q, Huang J Q. Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. EcoMat, 2021, 3(1): e12066. |
[62] |
Frey M, Zenn R K, Warneke S, Müller K, Hintennach A, Dinnebier R E, Buchmeiser M R. Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: Correlating electrochemical performance with morphology and structure[J]. ACS Energy Lett., 2017, 2(3): 595-604.
doi: 10.1021/acsenergylett.7b00009 URL |
[63] | Razzaq A A, Yao Y Z, Shah R, Qi P W, Miao L X, Chen M Z, Zhao X H, Peng Y, Deng Z. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes[J]. Energy Storage Mater., 2019, 16: 194-202. |
[64] |
Wang X F, Qian Y M, Wang L N, Yang H, Li H L, Zhao Y, Liu T X. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Adv. Funct. Mater., 2019, 29(39): 1902929.
doi: 10.1002/adfm.201902929 URL |
[65] |
Li S P, Han Z L, Hu W, Peng L F, Yang J Q, Wang L H, Zhang Y Y, Shan B, Xie J. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J]. Nano Energy, 2019, 60: 153-161.
doi: 10.1016/j.nanoen.2019.03.023 URL |
[66] |
Lebherz T, Frey M, Hintennach A, Buchmeiser M R. Influence of morphology of monolithic sulfur-poly(acrylonitrile) composites used as cathode materials in lithium-sulfur batteries on electrochemical performance[J]. RSC Adv., 2019, 9(13): 7181-7188.
doi: 10.1039/c8ra09976f |
[67] |
Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yang J, Wang J L. A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode[J]. Chem. Commun., 2018, 54(43): 5478-5481.
doi: 10.1039/C8CC02552E URL |
[68] |
Yin L C, Wang J L, Lin F J, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries[J]. Energy Environ. Sci., 2012, 5(5): 6966-6972.
doi: 10.1039/c2ee03495f URL |
[69] |
Yang H J, Chen J H, Yang J, Wang J L. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries[J]. Angew. Chem. Int. Ed., 2020, 59(19): 7306-7318.
doi: 10.1002/anie.201913540 pmid: 31713966 |
[70] |
Li Z, Zhang J T, Lu Y, Lou X W. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances[J]. Sci. Adv., 2018, 4(6): eaat1687.
doi: 10.1126/sciadv.aat1687 URL |
[71] |
Wang L H, Chen X, Li S P, Yang J Q, Sun Y L, Peng L F, Shan B, Xie J. Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium-sulfur batteries[J]. J. Mater. Chem. A, 2019, 7(20): 12732-12739.
doi: 10.1039/C9TA02831E URL |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[6] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[7] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[8] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[9] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[10] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[11] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[12] | 范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387. |
[13] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[14] | 魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730. |
[15] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||