欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2022, Vol. 28 ›› Issue (12): 2219013.  doi: 10.13208/j.electrochem.2219013

所属专题: “下一代二次电池”专题文章

• 综述 • 上一篇    

锂硫电池复合正极研究进展

李西尧1, 赵长欣1, 李博权2,3,*(), 黄佳琦2,3, 张强1,*()   

  1. 1.清华大学化学工程系, 北京 100084, 中华人民共和国
    2.北京理工大学前沿交叉科学研究院, 北京 100081,中华人民共和国
    3.北京理工大学材料学院,北京 100081, 中华人民共和国
  • 收稿日期:2022-12-08 修回日期:2022-12-02 出版日期:2022-12-28 发布日期:2022-12-28

Advances on Composite Cathodes for Lithium-Sulfur Batteries

Xi-Yao Li1, Chang-Xin Zhao1, Bo-Quan Li2,3,*(), Jia-Qi Huang2,3, Qiang Zhang1,*()   

  1. 1. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    2. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
    3. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-12-08 Revised:2022-12-02 Published:2022-12-28 Online:2022-12-28
  • Contact: *Tel: (86-10) 62789041, E-mail: zhang-qiang@mails.tsinghua.edu.cn (Zhang Q.); Tel: (86-10)68911612, libq@bit.edu.cn (Li B.-Q.)

摘要:

锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系,其中高比容量的硫正极提供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了S/C正极和SPAN正极的最新研究进展。首先,简要介绍了两种正极的工作原理并进行了比较。S/C正极发生固-液-固多相转化反应,充放电表现为双平台特征。与之相比,SPAN正极发生固-固反应,充放电曲线为单平台。然后,对两种正极所面临的挑战和目前报道的优化策略进行了系统的分析与讨论。对于S/C正极,主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还原介体调控;对于SPAN正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介体调控。最后,在电池尺度上对S/C正极和SPAN正极进行了综合比较,并对基于S/C正极和SPAN正极的锂硫电池在未来所面对的机遇与挑战进行了展望。

关键词: 锂硫电池, 硫碳复合正极, 硫化聚丙烯腈正极, 多硫化锂

Abstract:

Lithium-sulfur (Li-S) batteries are deemed as high-promising next-generation energy storage technique due to their ultrahigh theoretical energy density, where the sulfur cathodes with high specific capacity guarantee the energy density advantage and directly determine the battery performances. After decades of exploration, the most promising sulfur cathodes are sulfur/carbon composite (S/C) cathodes and sulfurized polyacrylonitrile (SPAN) cathodes. In this manuscript, recent advances on S/C and SPAN cathodes in Li-S batteries are comprehensively reviewed. The electrochemical reaction circumstances on S/C and SPAN cathodes are firstly introduced and compared to reveal the working mechanisms of the two types of Li-S batteries. The S/C cathodes mainly undergo solid-liquid-solid multi-phase conversion processes with typical double-plateau charge-discharge polarization curves. In comparison, the SPAN cathodes follow solid-solid conversion and exhibit single-plateau charge-discharge characteristics. Following that, key challenges and targeted optimizing strategies of the S/C and SPAN cathodes are respectively presented and discussed. For Li-S batteries with S/C cathodes, the main optimizing strategies are electrode structure modification, efficient electrocatalyst design, and redox comediation. For SPAN cathodes, the main optimizing strategies are electrode structure modification, morphology regulation by co-polymerization, heteroatom doping at molecular level, and extrinsic redox mediation. At last, current research status of Li-S batteries with S/C or SPAN cathodes are systematically analyzed through the comparison of several battery parameters, and perspectives on challenges and opportunities of S/C and SPAN cathodes in Li-S batteries are presented to guide future researches.

Key words: lithium-sulfur battery, sulfur/carbon composite cathode, sulfurized polyacrylonitrile cathode, lithium polysulfide