电化学(中英文) ›› 2023, Vol. 29 ›› Issue (4): 2217003. doi: 10.13208/j.electrochem.2217003
所属专题: “下一代二次电池”专题文章
杨云锐a,b, 董欢欢a,b, 郝志强a,b, 何祥喜b, 杨卓b, 李林a,b,*(), 侴术雷a,b,*()
收稿日期:
2022-07-20
修回日期:
2022-08-15
接受日期:
2022-09-06
出版日期:
2023-04-28
发布日期:
2022-09-14
Yun-Rui Yanga,b, Huan-Huan Donga,b, Zhi-Qiang Haoa,b, Xiang-Xi Heb, Zhuo Yangb, Lin Lia,b,*(), Shu-Lei Choua,b,*()
Received:
2022-07-20
Revised:
2022-08-15
Accepted:
2022-09-06
Published:
2023-04-28
Online:
2022-09-14
Contact:
*Tel: (86-577)89601360 E-mail: 摘要:
锂硫电池由于具有较高的能量密度而被认为是极具发展前景的储能设备之一。然而,硫正极遭遇迟缓的反应动力学、缓慢的电荷转移、大的体积膨胀、严重的多硫化锂穿梭效应,这些问题不可避免地导致锂硫电池表现出低的可逆容量、差的倍率性能、短的循环寿命,限制了锂硫电池的实际应用。本文总结了钴/碳复合材料(包括钴纳米颗粒和钴单原子)作为硫宿主的研究进展。总的来说,钴扮演着电催化剂的角色,能够抑制多硫化锂的穿梭效应,加快电化学反应动力学,促进离子/电子转移以及缓解体积膨胀。同时,我们展望了钴/碳复合材料作为锂硫电池硫宿主的发展前景。本工作可为钴/碳复合材料作为锂硫电池硫宿主提供完整的蓝图和建设性的建议,同时这些策略也可用于其他金属-硫电池。
杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003.
Yun-Rui Yang, Huan-Huan Dong, Zhi-Qiang Hao, Xiang-Xi He, Zhuo Yang, Lin Li, Shu-Lei Chou. Cobalt/Carbon Composites as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2023, 29(4): 2217003.
Cathode | Co content (wt%) | S content (wt%) | S loading (mg·cm-2) | Initial discharge capacity (mAh·g-1) /current density (C, 1.0 C = 1675 mA·g-1) | Rate performance (reversible capacity [mAh·g-1]/current density [C, 1.0 C=1675 mA·g-1]) | Cycle performance (capacity retention [%] /current density [C, 1.0 C = 1675 mA·g-1]/cycle number) | Ref. | |
---|---|---|---|---|---|---|---|---|
S@Co-N-GC | 38.6 | 70 | 2-2.5 | 1670/0.05 | 565/5 | 54.3/1/500 | [ | |
MC-NS/S | - | 86 | 1.5 | 1618/0.1 | 529/5 | 77.4/0.2/100 | [ | |
S@Co-BIDC | 0.94 | 71 | 1.2 | 1219/0.1 | 364/2 | 79/1/300 | [ | |
N-PC@uCo/S | 6.09 | 76 | 1.8 | 1370/0.1 | 600/5 | 86/1/500 | [ | |
Co-N-CNTA/S | - | ~40 | 2 | 1045/1 | - | 77.89/1/1000 | [ | |
80S/h-Co-BN-GC | 10.9 | 79.6 | 1.3-1.4 | 1205/0.2 | 705/2 | 80.5/0.5/500 | [ | |
S@H-Co-NCM | - | 82 | 2 | 1374/0.1 | 611/2 | 65.5/0.5/500 | [ | |
S@Co-NHGC | - | 65 | 1-1.5 | 1600/0.1 | 600/3 | 50/3/400 | [ | |
S/Co@N-HCMSs | 26.5 | 75.13 | 1 | 1203/0.1 | 692/4 | 60/1/500 | [ | |
Co-NCG/S | 0.7 | 50 | 1-1.2 | 1355.3/0.1 | 578.9/5 | 80/1/200 | [ | |
Co/Co-Nx@NG/S | - | 74 | 1.02 | 1300.3/0.1 | 884.2/2 | 51.4/2/705 | [ | |
RGO/C-Co-S | 44.1 | 59 | 1.0 | 1218/~0.18 | 479/~3 | 78.1/0.18/300 | [ | |
S/N-Co-C@G-CNTs | - | 79.6 | 1.87 | 1227.5/0.2 | 632.5/5 | 88.9/2/1000 | [ | |
CNT-NC@GC/S | 2.5 | 79.2 | 1.3-1.4 | 1498/0.1 | 87.2/0.1/100 | [ | ||
Co/CNS/CNT-S | - | 69.7 | 4.0 | 1040/0.1 | ~799/1 | 79.3/0.5/200 | [ | |
S/Co-GC@GPCA | 3 | 63.33 | 2.04 | 939.9/0.1 | 439.1/2 | 56.2/1/504 | [ | |
Co/N-PCN@rGO@S | 7.5 | 74 | 2.0 | 1290/0.2 | 880/2 | 67/1/500 | [ | |
Co/N-PCNF@S | - | 62.2 | 2.0-3.0 | 1048/0.2 | 672/3 | 83/1/200 | [ | |
S@Co−N/G | - | 90 | 2.0 | 1210/0.2 | 618/4 | 73.5/1/500 | [ | |
S@Co-SAs@NC | 0.66 | 76 | 2.0 | 1438/0.1 | 670/10 | ~70/1/600 | [ | |
S@Co-CMP | 2.32 | 16 | 1.1 | 1336/0.1 | 766/2 | 55/0.5/1000 | [ | |
ACo@HCS-S | - | 76.9 | 2.0 | 1322/0.1 | 794/2 | 99/1/500 | [ | |
SACo/NDC@S | 3.15 | 65 | 1.5 | 1075.3/0.1 | 517.5/3 | 76/0.5/300 | [ | |
CoSA-NC@S | 15.3 | 74.2 | 1.2 | 1574/0.05 | 624/5 | 65/1/1000 | [ |
[1] |
Camargos P H, dos Santos P H J, dos Santos I R, Ribeiro G S, Caetano R E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art[J]. Int. J. Energy Res., 2022, 46(13): 19258-19268.
doi: 10.1002/er.v46.13 URL |
[2] |
Madani S S, Schaltz E, Kær S K. Characterization of the compressive load on a lithium-ion battery for electric vehicle application[J]. Machines, 2021, 9(4): 71.
doi: 10.3390/machines9040071 URL |
[3] |
Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K S, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86.
doi: 10.1038/s41586-019-1682-5 |
[4] |
Gao Y, Ji W J, Chen X Q. Numerical study on thermal management of air-cooling model for diamond, triangular and rectangular lithium-ion batteries of electric vehicles[J]. Processes, 2022, 10(6): 1104.
doi: 10.3390/pr10061104 URL |
[5] |
Chen L, Wu H L, Ai X P, Cao Y L, Chen Z X. Toward wide-temperature electrolyte for lithium-ion batteries[J]. Battery Energy., 2022, 1(2): 20210006.
doi: 10.1002/bte2.v1.2 URL |
[6] |
Zhou G M, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nat. Energy, 2022, 7(4): 312-319.
doi: 10.1038/s41560-022-01001-0 |
[7] |
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186.
doi: 10.1038/s41560-019-0338-x |
[8] |
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v pmid: 25026475 |
[9] |
Yin Y X, Xin S, Guo Y G, Wan L J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angew. Chem. Int. Ed., 2013, 52(50): 13186-13200.
doi: 10.1002/anie.201304762 URL |
[10] |
Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
doi: 10.1016/j.esci.2021.08.001 URL |
[11] |
Fang R P, Zhao S Y, Sun Z H, Wang D, Cheng H M, Li F. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29(48): 1606823.
doi: 10.1002/adma.v29.48 URL |
[12] |
Liu S F, Wang X L, Xie D, Xia X H, Gu C D, Wu J B, Tu J P. Recent development in lithium metal anodes of liquid-state rechargeable batteries[J]. J. Alloy. Compd., 2018, 730: 135-149.
doi: 10.1016/j.jallcom.2017.09.204 URL |
[13] | Yue X Y, Ma C, Bao J, Yang S Y, Chen D, Wu X J, Zhou Y N. Failure mechanisms of lithium metal anode and their advanced characterization technologies[J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012. |
[14] |
Balach J, Linnemann J, Jaumann T, Giebeler L. Metal-based nanostructured materials for advanced lithium-sulfur batteries[J]. J. Mater. Chem. A, 2018, 6(46): 23127-23168.
doi: 10.1039/C8TA07220E URL |
[15] |
Li Y J, Guo S J. Material design and structure optimization for rechargeable lithium-sulfur batteries[J]. Matter, 2021, 4(4): 1142-1188.
doi: 10.1016/j.matt.2021.01.012 URL |
[16] |
Fang X, Peng H S. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries[J]. Small, 2015, 11(13): 1488-1511.
doi: 10.1002/smll.201402354 pmid: 25510342 |
[17] |
Sun H, Song C W, Pang Y P, Zheng S Y. Functional design of separator for Li-S batteries[J]. Prog. Chem., 2020, 32(9): 1402-1411.
doi: 10.7536/PC200107 |
[18] |
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12636-12652.
doi: 10.1002/anie.201909339 pmid: 31490599 |
[19] |
Chu R R, Nguyen T T, Bai Y Q, Kim N H, Lee J H. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium-sulfur batteries[J]. Adv. Energy Mater., 2022, 12(9): 2102805.
doi: 10.1002/aenm.v12.9 URL |
[20] |
Hong H, Mohamad N A R C, Chae K, Mota F M, Kim D H. The lithium metal anode in Li-S batteries: Challenges and recent progress[J]. J. Mater. Chem. A, 2021, 9(16): 10012-10038.
doi: 10.1039/D1TA01091C URL |
[21] |
Zhang T, Zhang L, Hou Y L. Mxenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience, 2022, 2(2): 164-182.
doi: 10.1016/j.esci.2022.02.010 URL |
[22] |
Li Z, Hou L P, Zhang X Q, Li B Q, Huang J Q, Chen C M, Liu Q B, Xiang R, Zhang Q. A Nafion protective layer for stabilizing lithium metal anodes in working lithium-sulfur batteries[J]. Battery Energy, 2022, 1(3): 20220006.
doi: 10.1002/bte2.v1.3 URL |
[23] |
Wang C D, Ma Y, Du X F, Zhang H R, Xu G J, Cui G L. A polysulfide radical anions scavenging binder achieves long-life lithium-sulfur batteries[J]. Battery Energy, 2022, 1(3): 20220010.
doi: 10.1002/bte2.v1.3 URL |
[24] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
doi: 10.1038/nmat2460 |
[25] | Fu A, Wang C Z, Pei F, Cui J Q, Fang X L, Zheng N F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries[J]. Small, 2019, 15(10): 1804786. |
[26] |
Li S S, Jin B, Zhai X J, Li H, Jiang Q. Review of carbon materials for lithium-sulfur batteries[J]. ChemistrySelect, 2018, 3(8): 2245-2260.
doi: 10.1002/slct.201703112 URL |
[27] |
Zhou G M, Yin L C, Wang D W, Li L, Pei S F, Gentle I R, Li F, Cheng H M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano, 2013, 7(6): 5367-5375.
doi: 10.1021/nn401228t pmid: 23672616 |
[28] |
Kang J B, Tian X H, Yan C Z, Wei L Y, Gao L, Ju J G, Zhao Y X, Deng N P, Cheng B W, Kang W M. Customized structure design and functional mechanism analysis of carbon spheres for advanced lithium-sulfur batteries[J]. Small, 2022, 18(8): 2104469.
doi: 10.1002/smll.v18.8 URL |
[29] |
Li L, Zhou G M, Yin L C, Koratkar N, Li F, Cheng H M. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries[J]. Carbon, 2016, 108:120-126.
doi: 10.1016/j.carbon.2016.07.008 URL |
[30] |
Babu G, Ababtain K, Ng K Y S, Arava L M R. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration[J]. Sci. Rep., 2015, 5: 8763.
doi: 10.1038/srep08763 pmid: 25740731 |
[31] |
Sun Z X, Vijay S, Heenen H H, Eng A Y S, Tu W G, Zhao Y X, Koh S W, Gao P Q, Seh Z W, Chan K R, Li H. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries[J]. Adv. Energy Mater., 2020, 10(22): 1904010.
doi: 10.1002/aenm.v10.22 URL |
[32] | He J R, Manthiram A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries[J]. Energy Storage Mater., 2019, 20: 55-70. |
[33] |
Wang P, Xi B J, Huang M, Chen W H, Feng J K, Xiong S L. Emerging catalysts to promote kinetics of lithium-sulfur batteries[J]. Adv. Energy Mater., 2021, 11(7): 2002893.
doi: 10.1002/aenm.v11.7 URL |
[34] |
Ogoke O, Hwang S, Hultman B, Chen M J, Karakalos S, He Y H, Ramsey A, Su D, Alexandridis P, Wu G. Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium-sulfur batteries[J]. J. Mater. Chem. A., 2019, 7(21): 13389-13399.
doi: 10.1039/C9TA02889G URL |
[35] |
Xing Z Y, Tan G Q, Yuan Y F, Wang B, Ma L, Xie J, Li Z S, Wu T P, Ren Y, Shahbazian-Yassar R, Lu J, Ji X L, Chen Z W. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes[J]. Adv. Mater., 2020, 32(31): 2002403.
doi: 10.1002/adma.v32.31 URL |
[36] |
Wang Y C, Shi C S, Sha J W, Ma L Y, Liu E Z, Zhao N Q. Single-atom cobalt supported on nitrogen-doped three-dimensional carbon facilitating polysulfide conversion in lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2022, 14(22): 25337-25347.
doi: 10.1021/acsami.2c02713 URL |
[37] |
Faheem M, Li W L, Ahmad N, Yang L, Tufail M K, Zhou Y D, Zhou L, Chen R J, Yang W. Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries[J]. J. Colloid Interf. Sci., 2021, 585: 328-336.
doi: 10.1016/j.jcis.2020.11.050 pmid: 33302049 |
[38] |
Li Y J, Xu P, Chen G L, Mou J R, Xue S F, Li K, Zheng F H, Dong Q F, Hu J H, Yang C H, Liu M L. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst[J]. Chem. Eng. J., 2020, 380: 122595.
doi: 10.1016/j.cej.2019.122595 URL |
[39] |
Zhang X, Li Y, Li J D, Jia A Z, Sun D L, Wang Y J. Vertically rooting carbon nanotubes on cobalt-loaded hollow titanium dioxide spheres as conductive multifunctional sulfur hosts for superior lithium-sulfur performance[J]. J. Alloy. Compd., 2021, 854: 157267.
doi: 10.1016/j.jallcom.2020.157267 URL |
[40] |
Zhong M E, Guan J D, Feng Q J, Wu X W, Xiao Z B, Zhang W, Tong S, Zhou N, Gong D X. Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries[J]. Carbon, 2018, 128: 86-96.
doi: 10.1016/j.carbon.2017.11.084 URL |
[41] |
Li L X, Du X H, Liu G H, Zhang Y C, Zhang Z S, Li J D. Micro-/mesoporous Co-NC embedded three-dimensional ordered macroporous metal framework as Li-S battery cathode towards effective polysulfide catalysis and retention[J]. J. Alloy. Compd., 2022, 893: 162327.
doi: 10.1016/j.jallcom.2021.162327 URL |
[42] |
Wang M R, Zhou X F, Cai X, Wang H Q, Fang Y P, Zhong X H. Hierarchically porous, ultrathin N-doped carbon nanosheets embedded with highly dispersed cobalt nanoparticles as efficient sulfur host for stable lithium-sulfur batteries[J]. J. Energy Chem., 2020, 50: 106-114.
doi: 10.1016/j.jechem.2020.03.014 URL |
[43] |
Wang R R, Wu R B, Yan X X, Liu D, Guo P F, Li W, Pan H G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2022, 32(20): 2200424.
doi: 10.1002/adfm.v32.20 URL |
[44] |
Wang T, Cui G L, Zhao Y, Nurpeissova A, Bakenov Z. Porous carbon nanotubes microspheres decorated with strong catalyst cobalt nanoparticles as an effective sulfur host for lithium-sulfur battery[J]. J. Alloy. Compd., 2021, 853:157268.
doi: 10.1016/j.jallcom.2020.157268 URL |
[45] |
Liang X H, Wu X, Zeng S B, Xu W, Jiang X T, Lan L X. Fast conversion of lithium (poly)sulfides in lithium-sulfur batteries using three-dimensional porous carbon[J]. RSC Adv., 2021, 11(41): 25266-25273.
doi: 10.1039/d1ra02704b pmid: 35478876 |
[46] |
Li J, Chen C, Qin F R, Jiang Y J, An H, Fang J, Zhang K, Lai Y Q. Mesoporous Co-N-C composite as a sulfur host for high-capacity and long-life lithium-sulfur batteries[J]. J. Mater. Sci., 2018, 53(18): 13143-13155.
doi: 10.1007/s10853-018-2566-z |
[47] |
Li Y J, Fan J M, Zheng M S, Dong Q F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy Environ. Sci., 2016, 9(6): 1998-2004.
doi: 10.1039/C6EE00104A URL |
[48] |
Li J B, Chen C Y, Chen Y W, Li Z H, Xie W F, Zhang X, Shao M F, Wei M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries[J]. Adv. Energy Mater., 2019, 9(42): 1901935.
doi: 10.1002/aenm.v9.42 URL |
[49] |
Abdelkader A A, Norouzi N, Rodene D D, Alzharani A, Gupta R B, El-Kadri H M. Electrocatalytic cathodes based on cobalt nanoparticles supported on nitrogen-doped porous carbon by strong electrostatic adsorption for advanced lithium-sulfur batteries[J]. Energy Fuel., 2020, 34(10): 13038-13047.
doi: 10.1021/acs.energyfuels.0c01859 URL |
[50] |
Wang R, Yang J L, Chen X, Zhao Y, Zhao W G, Qian G Y, Li S N, Xiao Y G, Chen H, Ye Y S, Zhou G M, Pan F. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery[J]. Adv. Energy Mater., 2020, 10(9): 1903550.
doi: 10.1002/aenm.v10.9 URL |
[51] |
Hu W H, Zheng M B, Xu B Y, Wei Y, Zhu W, Li Q, Pang H. Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage[J]. J. Mater. Chem. A, 2021, 9(7): 3880-3917.
doi: 10.1039/D0TA10666F URL |
[52] |
Duan J L, Zou Y L, Li Z Y, Long B, Du Y Y. Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery[J]. J. Electroanal. Chem., 2019, 847: 113187.
doi: 10.1016/j.jelechem.2019.113187 URL |
[53] |
Li M M, Feng W J, Wang X. Complex hollow structures of cobalt(II) sulfide as a cathode for lithium-sulfur batteries[J]. Int. J. Electrochem. Sci., 2020, 15(1): 526-534.
doi: 10.20964/2020.01.77 URL |
[54] |
Zhao J L, Yang M, Yang N L, Wang J Y, Wang D. Hollow micro-/nanostructure reviving lithium-sulfur batteries[J]. Chem. Res. Chin. Univ., 2020, 36(3): 313-319.
doi: 10.1007/s40242-020-0115-2 |
[55] |
Hu C J, Yang C K, Yang J J, Han N N, Yuan R Y, Chen Y F, Liu H, Xie T H, Chen R D, Zhou H H, Liu W, Sun X M. An entangled cobalt-nitrogen-carbon nanotube array electrode with synergetic confinement and electrocatalysis of polysulfides for stable Li-S batteries[J]. ACS Appl. Energy Mater., 2019, 2(4): 2904-2912.
doi: 10.1021/acsaem.9b00243 URL |
[56] |
Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Manipulating the redox kinetics of Li-S chemistry by porous hollow cobalt-B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries[J]. Carbon, 2019, 149: 564-571.
doi: 10.1016/j.carbon.2019.04.022 URL |
[57] |
Chen S X, Han X X, Luo J H, Liao J, Wang J, Deng Q, Zeng Z L, Deng S G. In situ transformation of LDH into hollow cobalt-embedded and N-doped carbonaceous microflowers as polysulfide mediator for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 385: 123457.
doi: 10.1016/j.cej.2019.123457 URL |
[58] |
Lei F F, Cao Y Q, Fu Y F, Li Y L, Wang R W, Qiu S L, Zhang Z T. In situ self-polymerization to form hollow graphitized carbon nanocages with embedded cobalt nanoparticles for high-performance lithium-sulfur batteries[J]. Chem. Eur. J., 2020, 26(58): 13295-13304.
doi: 10.1002/chem.v26.58 URL |
[59] |
Su L, Zhang J Q, Chen Y, Yang W, Wang J, Ma Z P, Shao G J, Wang G X. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries[J]. Nano Energy, 2021, 85: 105981.
doi: 10.1016/j.nanoen.2021.105981 URL |
[60] |
Tan K, Liu Y, Tan Z L, Zhang J Y, Hou L R, Yuan C Z. High-yield and in situ fabrication of high-content nitrogen-doped graphene nanoribbons@Co/CoOOH as an integrated sulfur host towards Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3048-3059.
doi: 10.1039/C9TA13414J URL |
[61] |
Li C C, Qi S Y, Zhu L, Zhao Y, Huang R Z, He Y Y, Ge W N, Liu X B, Zhao M W, Xu L Q, Qian Y T. Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithium-sulfur batteries[J]. Nano Today, 2021, 40: 101246.
doi: 10.1016/j.nantod.2021.101246 URL |
[62] |
Mao W T, Ma C, Ni P, Li M L, Ding Y M, Zhang S J, Pan J L, Cao F P, Bao K Y. One-pot fabrication of crumpled N-doped graphene anchored with cobalt for high-performance lithium-sulfur batteries[J]. ChemElectroChem, 2020, 7(7): 1733-1738.
doi: 10.1002/celc.v7.7 URL |
[63] |
Xu Q E, Zhou H F, Tang Q L, Hu A P, Xu Y L, Shen Y P, Kang C, Zhou Y, Chen X H. Co nanoparticles anchored on the Co-Nx active centers grafted nitrogen-doped graphene with enhanced performance for lithium-sulfur battery[J]. J. Alloy. Compd., 2022, 890: 161552.
doi: 10.1016/j.jallcom.2021.161552 URL |
[64] |
Li Z Q, Li C X, Ge X L, Ma J Y, Zhang Z W, Li Q, Wang C X, Yin L W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries[J]. Nano Energy, 2016, 23: 15-26.
doi: 10.1016/j.nanoen.2016.02.049 URL |
[65] |
Zhang J F, Wang W J, Zhang Y G, Bakenoy Z, Zhao Y. Hierarchical rambutan-like CNTs-assembled N-Co-C@rGO composite as sulfur immobilizer for high-performance lithium-sulfur batteries[J]. ChemElectroChem, 2019, 6(17): 4565-4570.
doi: 10.1002/celc.v6.17 URL |
[66] |
Zhou F, Qiao Z S, Zhang Y G, Xu W J, Zheng H F, Xie Q S, Luo Q, Wang L S, Qu B H, Peng D L. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries[J]. Electrochim. Acta, 2020, 349: 136378.
doi: 10.1016/j.electacta.2020.136378 URL |
[67] |
Lin T N, Jia H F, Ali U, Liu B Q, Zhang Q, Jin Z S, Li L, Zhang L Y, Wang C G. Facile "lotus blooming" strategy to synthesize a 3D carbon nanosheet/carbon nanotube framework with embedded Co nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Appl. Energy Mater., 2021, 4(10): 11343-11352.
doi: 10.1021/acsaem.1c02162 URL |
[68] |
Gao X G, Huang Y, Sun X Y, Batool S, Li T H. Nanopolyhedron Co-C/cores triggered carbon nanotube in-situ growth inside carbon aerogel shells for fast and long-lasting lithium-sulfur batteries[J]. J. Power Sources, 2022, 520: 230913.
doi: 10.1016/j.jpowsour.2021.230913 URL |
[69] |
Xiao Q H Q, Yang J L, Wang X D, Deng Y R, Han P, Yuan N, Zhang L, Feng M, Wang C A, Liu R P. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective[J]. Carbon Energy, 2021, 3(2): 271-302.
doi: 10.1002/cey2.v3.2 URL |
[70] |
Wang R, Chen Z, Sun Y, Chang C, Ding C, Wu R. Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 399: 125686.
doi: 10.1016/j.cej.2020.125686 URL |
[71] |
Zhang Q F, Qiao Z S, Cao X R, Qu B H, Yuan J, Fan T E, Zheng H F, Cui J Q, Wu S Q, Xie Q S, Peng D L. Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries[J]. Nanoscale Horiz., 2020, 5(4): 720-729.
doi: 10.1039/c9nh00663j pmid: 32053127 |
[72] |
Zhu Y Q, Sun W M, Luo J, Chen W X, Cao T, Zheng L R, Dong J C, Zhang J, Zhang M L, Han Y H, Chen C, Peng Q, Wang D S, Li Y D. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts[J]. Nat. Commun., 2018, 9: 3861.
doi: 10.1038/s41467-018-06296-w pmid: 30242151 |
[73] |
Wang J, Jia L J, Lin H Z, Zhang Y G. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries[J]. ChemSusChem, 2020, 13(13): 3404-3411.
doi: 10.1002/cssc.202000702 pmid: 32297467 |
[74] |
Zhang J, You C Y, Lin H Z, Wang J. Electrochemical kinetic modulators in lithium-sulfur batteries: from defect-rich catalysts to single atomic catalysts[J]. Energy Environ. Mater., 2021, 5(3): 731-750.
doi: 10.1002/eem2.v5.3 URL |
[75] |
Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3421-3430.
doi: 10.1039/C9TA11680J URL |
[76] |
Wang F F, Li J, Zhao J, Yang Y X, Su C L, Zhong Y L, Yang Q H, Lu J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges[J]. ACS Materials Lett., 2020, 2(11): 1450-1463.
doi: 10.1021/acsmaterialslett.0c00396 URL |
[77] |
Zhao W M, Shen J D, Xu X J, He W X, Liu L, Chen Z H, Liu J. Functional catalysts for polysulfide conversion in Li-S batteries: From micro/nanoscale to single atom[J]. Rare Met., 2022, 41(4): 1080-1100.
doi: 10.1007/s12598-021-01865-3 |
[78] |
Zhang B W, Sheng T, Liu Y D, Wang Y X, Zhang L, Lai W H, Wang L, Yang J P, Gu Q F, Chou S L, Liu H K, Dou S X. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nat. Commun., 2018, 9: 4082.
doi: 10.1038/s41467-018-06144-x |
[79] |
Wu J B, Xiong L K, Zhao B T, Liu M, Huang L. Densely populated single atom catalysts[J]. Small Methods, 2019, 4(2): 1900540.
doi: 10.1002/smtd.v4.2 URL |
[80] |
Liang Z W, Shen J D, Xu X J, Li F K, Liu J, Yuan B, Yu Y, Zhu M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(30): 2200102.
doi: 10.1002/adma.v34.30 URL |
[81] |
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
doi: 10.1021/jacs.8b12973 pmid: 30764605 |
[82] | Li Y J, Chen G L, Mou J R, Liu Y Z, Xue S F, Tan T, Zhong W T, Deng Q, Li T, Hu J H, Yang C H, Huang K, Liu M L. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 28: 196-204. |
[83] | Fan X Y, Chen S, Gong W B, Meng X D, Jia Y C, Wang Y L, Hong S, Zheng L, Zheng L R, Bielawski C W, Geng J X. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics[J]. Energy Storage Mater., 2021, 41: 14-23. |
[84] |
Wang Z S, Shen J D, Xu X J, Yuan J J, Zuo S Y, Liu Z B, Zhang D C, Liu J. In-situ synthesis of carbon-encapsulated atomic cobalt as highly efficient polysulfide electrocatalysts for highly stable lithium-sulfur batteries[J]. Small, 2022, 18(13): 2106640.
doi: 10.1002/smll.v18.13 URL |
[85] | Li Y J, Wu J B, Zhang B, Wang W Y, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y M. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storage Mater., 2020, 30: 250-259. |
[86] |
Zhao C, Xu G L, Yu Z, Zhang L C, Hwang I, Mo Y X, Ren Y X, Cheng L, Sun C J, Ren Y, Zuo X B, Li J T, Sun S G, Amine K, Zhao T S. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nat. Nanotechnol., 2021, 16(2): 166-173.
doi: 10.1038/s41565-020-00797-w pmid: 33230316 |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[4] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[5] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[6] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[7] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[8] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[9] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[10] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[11] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[12] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[13] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[14] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[15] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||