电化学(中英文) ›› 2022, Vol. 28 ›› Issue (7): 2213006. doi: 10.13208/j.electrochem.2213006
所属专题: “电子电镀和腐蚀”专题文章
收稿日期:
2022-02-28
修回日期:
2022-05-04
出版日期:
2022-07-28
发布日期:
2022-05-12
通讯作者:
* (86-731)88879616, E-mail: zhenhe@csu.edu.cn
Kui Huang1, Rong-Jiao Huang1, Su-Qin Liu1,2, Zhen He1,2,*()
Received:
2022-02-28
Revised:
2022-05-04
Published:
2022-07-28
Online:
2022-05-12
摘要:
电沉积作为一种在温和条件下从溶液中合成材料的技术已被广泛应用于在导体和半导体基底表面合成各种功能材料。电沉积一般由人为施加于基底的电刺激(如:施加电位/电流)来触发。这种电刺激通过氧化或还原靠近基底表面的溶液层内部的离子、 分子或配合物从而使该溶液层偏离其热力学平衡状态,随后引起目标产物在基底表面的沉积。在电沉积过程中, 许多实验参数都可能从不同的方面对沉积物的物化性质造成影响。迄今为止,已通过电沉积制备出多种单质(包括金属和非金属单质)、 化合物(例如:金属氧化物、金属氢氧化物、 金属硫化物等)以及复合材料。电沉积制备的这些材料大多为多晶、 织构或外延薄膜的形式。其中, 外延薄膜是一种具有特定的面外和面内晶体生长取向且其晶体取向受基底控制的类单晶薄膜。由于外延薄膜中高度有序的原子排列,它们常呈现出独特的电磁性质。本文总结了常见的电沉积合成路线及影响沉积物外延生长的关键实验因素。此外, 本文简要介绍了用于表征外延薄膜的技术。最后, 本文还讨论了一些采用电沉积制备的具有特殊电子、 电磁及光电特性的功能外延薄膜。
黄葵, 黄容姣, 刘素琴, 何震. 电子功能外延薄膜的电沉积[J]. 电化学(中英文), 2022, 28(7): 2213006.
Kui Huang, Rong-Jiao Huang, Su-Qin Liu, Zhen He. Electrodeposition of Functional Epitaxial Films for Electronics[J]. Journal of Electrochemistry, 2022, 28(7): 2213006.
[1] |
Kang D, Kim T W, Kubota S R, Cardiel A C, Cha H G, Choi K S. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting[J]. Chem. Rev., 2015, 115(23): 12839-12887.
doi: 10.1021/acs.chemrev.5b00498 URL |
[2] |
Switzer J A, Hodes G. Electrodeposition and chemical bath deposition of functional nanomaterials[J]. MRS Bull., 2010, 35(10): 743-752.
doi: 10.1557/S0883769400051253 URL |
[3] |
Gusley R, Ezzat S, Coffey K R, West A C, Barmak K. Influence of the seed layer and electrolyte on the epitaxial electrodeposition of Co(0001) for the fabrication of single crystal interconnects[J]. J. Electrochem. Soc., 2020, 167(16): 162503.
doi: 10.1149/1945-7111/abcd13 URL |
[4] |
Choi K S, Jang H S, McShane C M, Read C G, Seabold J A. Electrochemical synthesis of inorganic polycrystalline ele-ctrodes with controlled architectures[J]. MRS Bull., 2010, 35(10): 753-760.
doi: 10.1557/mrs2010.504 URL |
[5] |
Zhang Y H, An M Z, Yang P X, Zhang J Q. Recent advances in electroplating of through-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627.
doi: 10.1007/s12678-021-00687-2 URL |
[6] |
Gundel A, Devolder T, Chappert C, Schmidt J E, Cortes R, Allongue P. Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy[J]. Phys. B: Condens. Matter, 2004, 354(1-4): 282-285.
doi: 10.1016/j.physb.2004.09.068 URL |
[7] |
Sorenson T A, Morton S A, Waddill G D, Switzer J A. Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold[J]. J. Am. Chem. Soc., 2002, 124(25): 7604-7609.
pmid: 12071770 |
[8] |
He Z, Koza J A, Mu G J, Miller A S, Bohannan E W, Switzer J A. Electrodeposition of CoxFe3-xO4 epitaxial films and superlattices[J]. Chem. Mater., 2013, 25(2): 223-232.
doi: 10.1021/cm303289t URL |
[9] |
Koza J A, Hill J C, Demster A C, Switzer J A. Epitaxial electrodeposition of methylammonium lead Iodide perovskites[J]. Chem. Mater., 2016, 28(1): 399-405.
doi: 10.1021/acs.chemmater.5b04524 URL |
[10] |
Luo B, Banik A, Bohannan E W, Switzer J A. Epitaxial electrodeposition of hole transport CuSCN nanorods on Au(111) at the wafer scale and lift-off to produce flexible and transparent foils[J]. Chem. Mater., 2022, 34(3): 970-978.
doi: 10.1021/acs.chemmater.1c02694 URL |
[11] |
Yan Z H, Liu H H, Hao Z M, Yu M, Chen X, Chen J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode[J]. Chem. Sci., 2020, 11(39): 10614-10625.
doi: 10.1039/D0SC01532F URL |
[12] | Pu J, Shen Z H, Zhong C L, Zhou Q W, Liu J Y, Zhu J, Zhang H G. Electrodeposition technologies for Li-based batteries: New frontiers of energy storage[J]. Adv. Mater., 2019, 32(27): 1903808. |
[13] | Allongue P, Maroun F. Electrodeposited magnetic layers in the ultrathin limit[J]. MRS Bull., 2010, 35(10): 761-770. |
[14] |
Hangarter C M, Liu Y, Pagonis D, Bertocci U, Moffat T P. Electrodeposition of ternary Pt100-x-yCoxNiy alloys[J]. J. Electrochem. Soc., 2014, 161(1): D31-D43.
doi: 10.1149/2.022401jes URL |
[15] |
Herrick R D, Kaplan A S, Chinh B K, Shane M J, Sailor M J, Kavanagh K L, McCreey R L, Zhao J. Room-temperature electrosynthesis of carbonaceous fibers[J]. Adv. Mater., 1995, 7(4): 398-401.
doi: 10.1002/adma.19950070412 URL |
[16] |
Mahenderkar N K, Liu Y C, Koza J A, Switzer J A. Electrodeposited germanium nanowires[J]. ACS Nano, 2014, 8(9): 9524-9530.
doi: 10.1021/nn503784d pmid: 25157832 |
[17] |
Munisamy T, Bard A J. Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth[J]. Electrochim. Acta, 2010, 55(11): 3797-3803.
doi: 10.1016/j.electacta.2010.01.097 URL |
[18] |
Kothari H M, Kulp E A, Limmer S J, Poizot P, Bohannan E W, Switzer J A. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine[J]. J. Mater. Res., 2006, 21(1): 293-301.
doi: 10.1557/jmr.2006.0030 URL |
[19] |
Koza J A, He Z, Miller A S, Switzer J A. Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction[J]. Chem. Mater., 2012, 24(18): 3567-3573.
doi: 10.1021/cm3012205 URL |
[20] |
Koza J A, Schroen I P, Willmering M M, Switzer J A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films[J]. Chem. Mater., 2014, 26(15): 4425-4432.
doi: 10.1021/cm5014027 URL |
[21] |
Kulp E A, Kothari H M, Limmer S J, Yang J B, Gudavarthy R V, Bohannan E W, Switzer J A. Electrodeposition of epitaxial magnetite films and ferrihydrite nanoribbons on single-crystal gold[J]. Chem. Mater., 2009, 21(21): 5022-5031.
doi: 10.1021/cm9013514 URL |
[22] |
Hill J C, Koza J A, Switzer J A. Electrodeposition of epitaxial lead Iodide and conversion to textured methylammonium lead Iodide perovskite[J]. ACS Appl. Mater. Interfaces, 2015, 7(47): 26012-26016.
doi: 10.1021/acsami.5b07222 URL |
[23] |
Banik A, Bohannan E W, Switzer J A. Epitaxial electro-deposition of BiI3and topotactic conversion to highly ordered solar light-absorbing perovskite (CH3NH3)3Bi2I9[J]. Chem. Mater., 2020, 32(19): 8367-8372.
doi: 10.1021/acs.chemmater.0c02304 URL |
[24] |
Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem. Mater., 2000, 12(5): 1195-1204.
doi: 10.1021/cm990447a URL |
[25] |
Yan Z H, Sun H M, Chen X, Liu H H, Zhao Y R, Li H X, Xie W, Cheng F Y, Chen J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nat. Commun., 2018, 9: 2373.
doi: 10.1038/s41467-018-04788-3 URL |
[26] |
Lv Y, Zhang Z A, Lai Y Q, Liu Y X. Electrodeposition of porous Mg(OH)2 thin films composed of single-crystal nanosheets[J]. J. Electrochem. Soc., 2012, 159(4): D187-D189.
doi: 10.1149/2.019204jes URL |
[27] |
Aghazadeh M, Dalvand S, Hosseinifard M. Facile electrochemical synthesis of uniform β-Co(OH)2 nanoplates for high performance supercapacitors[J]. Ceram. Int., 2014, 40(2): 3485-3493.
doi: 10.1016/j.ceramint.2013.09.081 URL |
[28] |
Kulp E A, Switzer J A. Electrochemical biomineralization: The deposition of calcite with chiral morphologies[J]. J. Am. Chem. Soc., 2007, 129(49): 15120-15121.
doi: 10.1021/ja076303b URL |
[29] |
Limmer S J, Kulp E A, Switzer J A. Epitaxial electrodeposition of ZnO on Au(111) from alkaline solution: Exploiting amphoterism in Zn(II)[J]. Langmuir, 2006, 22(25): 10535-10539.
doi: 10.1021/la061185b URL |
[30] |
Poizot P, Hung C J, Nikiforov M P, Bohannan E W, Switzer J A. An electrochemical method for CuO thin film deposition from aqueous solution[J]. Electrochem. Solid-State Lett., 2003, 6(2): C21-C25.
doi: 10.1149/1.1535753 URL |
[31] |
Han S, Liu S Q, Yin S J, Chen L, He Z. Electrodeposited Co-Doped Fe3O4 thin films as efficient catalysts for the oxygen evolution reaction[J]. Electrochim. Acta, 2016, 210: 942-949.
doi: 10.1016/j.electacta.2016.05.194 URL |
[32] | Hssi A A, Atourki L, Abouabassi K, Elfanaoui A, Bouabid K, Ihall A, Benmokhtar S, Ouafi M. Growth and characterization of Cu2O for solar cells applications[M]. USA: Amer Inst Physics, 2018. |
[33] |
Siegfried M J, Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth[J]. Angew. Chem. Int. Ed., 2005, 44(21): 3218-3223.
doi: 10.1002/anie.200463018 URL |
[34] |
Li D J, Liu S Q, Ye G Y, Zhu W W, Zhao K M, Luo M, He Z. One-step electrodeposition of NixFe3-xO4/Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction[J]. Green Chem., 2020, 22(5): 1710-1719.
doi: 10.1039/D0GC00168F URL |
[35] | Zhou S M. Electrodeposition of metals: Principles and methods[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987. |
[36] | Tu Z M, An M Z, Hu H L. Modern alloy electrodeposition theory and technology[M]. Beijing: National Defense Industry Press, 2016. |
[37] | Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition[M]. USA: John Wiley & Sons, Inc., 2006. |
[38] |
Nikiforov M P, Vertegel A, Shumsky M G, Switzer J A. Epitaxial electrodeposition of Fe3O4 on single-crystal Au(111)[J]. Adv. Mater., 2000, 12(18): 1351-1353.
doi: 10.1002/1521-4095(200009)12:18<1351::AID-ADMA1351>3.0.CO;2-# URL |
[39] |
Liu R, Vertegel A A, Bohannan E W, Sorenson T A, Switzer J A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold[J]. Chem. Mater., 2001, 13(2): 508-512.
doi: 10.1021/cm000763l URL |
[40] |
Bohannan E W, Shumsky M G, Switzer J A. Epitaxial electrodeposition of copper(I) oxide on single-crystal gold (100)[J]. Chem. Mater., 1999, 11(9): 2289-2291.
doi: 10.1021/cm990304o URL |
[41] |
Bohannan E W, Kothari H M, Nicic I M, Switzer J A. En-antiospecific electrodeposition of chiral CuO films on single-crystal Cu(111)[J]. J. Am. Chem. Soc., 2004, 126(2): 488-489.
pmid: 14719945 |
[42] |
Liu R, Kulp E A, Oba F, Bohannan E W, Ernst F, Switzer J A. Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111)[J]. Chem. Mater., 2005, 17(4): 725-729.
doi: 10.1021/cm048296l URL |
[43] |
Lincot D, Kampmann A, Mokili B, Vedel J, Cortes R, Froment M. Epitaxial electrodeposition of CdTe films on InP from aqueous solutions: role of a chemically deposited CdS intermediate layer[J]. Appl. Phys. Lett., 1995, 67(16): 2355-2357.
doi: 10.1063/1.114343 URL |
[44] |
Switzer J A, Hill J C, Mahenderkar N K, Liu Y C. Nano-meter-thick gold on silicon as a proxy for single-crystal gold for the electrodeposition of epitaxial cuprous oxide thin films[J]. ACS Appl. Mater. Interfaces, 2016, 8(24): 15828-15837.
doi: 10.1021/acsami.6b04552 URL |
[45] |
Mahenderkar N K, Chen Q Z, Liu Y C, Duchild A R, Hofheins S, Chason E, Switzer J A. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics[J]. Science, 2017, 355(6330): 1203-1206.
doi: 10.1126/science.aam5830 pmid: 28302857 |
[46] |
Hull C M, Switzer J A. Electrodeposited epitaxial Cu(100) on Si(100) and lift-off of single crystal-like Cu(100) foils[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38596-38602.
doi: 10.1021/acsami.8b13188 URL |
[47] |
Luo B, Banik A, Bohannan E W, Switzer J A. Epitaxial electrodeposition of Cu(111) onto an L-cysteine self-assembled monolayer on Au(111) and epitaxial lift-off of single-crystal-like Cu foils for flexible electronics[J]. J. Phys. Chem. C, 2020, 124(39): 21426-21434.
doi: 10.1021/acs.jpcc.0c05425 URL |
[48] |
Chen Q Z, Switzer J A. Electrodeposition of nanometer-thick epitaxial films of silver onto single-crystal silicon wafers[J]. J. Mater. Chem. C, 2019, 7(6): 1720-1725.
doi: 10.1039/C8TC06002A URL |
[49] |
Switzer J A, Liu R, Bohannan E W, Ernst F. Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon[J]. J. Phys. Chem. B, 2002, 106(48): 12369-12372.
doi: 10.1021/jp0266188 URL |
[50] |
Switzer J A, Kothari H M, Bohannan E W. Thermodynamic to kinetic transition in epitaxial electrodeposition[J]. J. Phys. Chem. B, 2002, 106(16): 4027-4031.
doi: 10.1021/jp014638o URL |
[51] |
Nakanishi S, Lu G T, Kothari H M, Bohannan E W, Switzer J A. Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110)[J]. J. Am. Chem. Soc., 2003, 125(49): 14998-14999.
pmid: 14653729 |
[52] |
Gudavarthy R V, Gorantla S, Mu G J, Kulp E A, Gemming T, Eckert J, Switzer J A. Epitaxial electrodeposition of Fe3O4 on single-crystal Ni(111)[J]. Chem. Mater., 2011, 23(8): 2017-2019.
doi: 10.1021/cm2002176 URL |
[53] |
Kelso M V, Tubbesing J Z, Chen Q Z, Switzer J A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643)[J]. J. Am. Chem. Soc., 2018, 140(46): 15812-15819.
doi: 10.1021/jacs.8b09108 URL |
[54] |
Vertegel A A, Bohannan E W, Shumsky M G, Switzer J A. Epitaxial electrodeposition of orthorhombic α-PbO2 on (100)-oriented single crystal Au[J]. J. Electrochem. Soc., 2001, 148(4): C253-C256.
doi: 10.1149/1.1353571 URL |
[55] |
Cheng S Y, Chen G A, Chen Y Q, Huang C C. Effect of deposition potential and bath temperature on the electro-deposition of SnS film[J]. Opt. Mater., 2006, 29(4): 439-444.
doi: 10.1016/j.optmat.2005.10.018 URL |
[56] |
Govindaraju G V, Wheeler G P, Lee D, Choi K S. Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes[J]. Chem. Mater., 2017, 29(1): 355-370.
doi: 10.1021/acs.chemmater.6b03469 URL |
[57] | Leistner K, Duschek K, Zehner J, Yang M Z, Petr A, Nielsch K, Kavanagh K L. Role of hydrogen evolution during epitaxial electrodeposition of Fe on GaAs[J]. J. Ele-ctrochem. Soc., 2018, 165(4): H3076-H3079. |
[58] |
Gusley R, Sentosun K, Ezzat S, Coffey K R, West A C, Barmak K. Electrodeposition of epitaxial Co on Ru(0001)/Al2O3(0001)[J]. J. Electrochem. Soc., 2019, 166(15): D875-D881.
doi: 10.1149/2.1091915jes |
[59] |
Gabe D R. The role of hydrogen in metal electrodeposition processes[J]. J. Appl. Electrochem., 1997, 27(8): 908-915.
doi: 10.1023/A:1018497401365 URL |
[60] |
Liu R, Bohannan E W, Switzer J A, Oba F, Ernst F. Epitaxial electrodeposition of Cu2O films onto InP(001)[J]. Appl. Phys. Lett., 2003, 83(10): 1944-1946.
doi: 10.1063/1.1606503 URL |
[61] |
Liu R, Oba F, Bohannan E W, Ernst F, Switzer J A. Shape control in epitaxial electrodeposition: Cu2O nano-cubes on InP(001)[J]. Chem. Mater., 2003, 15(26): 4882-4885.
doi: 10.1021/cm034807c URL |
[62] |
Hainey M, Robin Y, Amano H, Usami N. Pole figure analysis from electron backscatter diffraction-an effective method of evaluating fiber-textured silicon thin films as seed layers for epitaxy[J]. Appl. Phys. Express, 2019, 12(2): 025501.
doi: 10.7567/1882-0786/aafb26 URL |
[63] |
Wei Y M, Fu Y C, Yan J W, Sun C F, Shi Z, Xie Z X, Wu D Y, Mao B W. Growth and shape-ordering of iron nanostructures on Au single crystalline electrodes in an ionic liquid: A paradigm of magnetostatic coupling[J]. J. Am. Chem. Soc., 2010, 132(23): 8152-8157.
doi: 10.1021/ja1021816 URL |
[64] |
Fu Y C, Yan J W, Wang Y, Tian J H, Zhang H M, Xie Z X, Mao B W. In situ STM studies on the underpotential deposition of antimony on Au(111) and Au(100) in a BMIBF4 ionic liquid[J]. J. Phys. Chem. C, 2007, 111(28): 10467-10477.
doi: 10.1021/jp071162l URL |
[65] |
Lin L G, Yan J W, Wang Y, Fu Y C, Mao B W. An in situ STM study of cobalt electrodeposition on Au(111) in BMIBF4 ionic liquid[J]. J. Exp. Nanosci., 2006, 1(3): 269-278.
doi: 10.1080/17458080601009643 URL |
[66] |
Deng B, Pang Z Q, Chen S L, Li X, Meng C X, Li J Y, Liu M X, Wu J X, Qi Y, Dang W H, Yang H, Zhang Y F, Zhang J, Kang N, Xu H Q, Fu Q, Qiu X H, Gao P, Wei Y J, Liu Z F, Peng H L. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates[J]. ACS Nano, 2017, 11(12): 12337-12345.
doi: 10.1021/acsnano.7b06196 URL |
[67] | Geiss R H, Read D T, Seiler D G, Diebold A C, McDonald R, Garner C M, Herr D, Khosla R P, Secula E M. Need for standardization of EBSD measurements for microstructural characterization of thin film structures[M]. USA: AMER INST PHYSICS, 2007. |
[68] |
Cachet H, Cortes R, Froment M, Maurin G. Epitaxial electrodeposition of cadmium selenide thin films on indium phosphide single crystal[J]. J. Solid State Electrochem., 1997, 1(1): 100-107.
doi: 10.1007/s100080050029 URL |
[69] | Munford M L, Cortes R, Allongue P. The preparation of ideally ordered flat H-Si(111) surfaces[J]. Sens. Mater., 2001, 13(5): 259-269. |
[70] |
Munford M L, Maroun F, Cortes R, Allongue P, Pasa A A. Electrochemical growth of gold on well-defined vicinal H-Si(111) surfaces studied by AFM and XRD[J]. Surf. Sci., 2003, 537(1-3): 95-112.
doi: 10.1016/S0039-6028(03)00563-6 URL |
[71] |
Prod′homme P, Maroun F, Cortes R, Allongue P. Electrochemical growth of ultraflat Au(111) epitaxial buffer layers on H-Si(111)[J]. Appl. Phys. Lett., 2008, 93(17): 171901.
doi: 10.1063/1.3006064 URL |
[72] |
Warren S, Prod′homme P, Maroun F, Allongue P, Cortes R, Ferrero C, Lee T L, Cowie B C C, Walker C J, Ferrer S, Zegenhagen J. Electrochemical Au deposition on stepped Si(111)-H surfaces: 3D versus 2D growth studied by AFM and X-ray diffraction[J]. Surf. Sci., 2009, 603(9): 1212-1220.
doi: 10.1016/j.susc.2009.03.004 URL |
[73] | Prodhomme P, Warren S, Cortes R, Jurca H F, Maroun F, Allongue P. Epitaxial growth of gold on H-Si(111): The determining role of hydrogen evolution[J]. Chem. Phys. Chem., 2010, 11(13): 2992-3001. |
[74] |
Akhtari-Zavareh A, Li W J, Maroun F, Allongue P, Kavanagh K L. Improved chemical and electrical stability of gold silicon contacts via epitaxial electrodeposition[J]. J. Appl. Phys., 2013, 113(6): 063708.
doi: 10.1063/1.4792000 URL |
[75] |
Zambelli T, Munford M L, Pillier F, Bernard M C, Allongue P. Cu electroplating on H-terminated n-Si(111)-properties and structure of n-Si/Cu junctions[J]. J. Electrochem. Soc., 2001, 148(9): C614-C619.
doi: 10.1149/1.1387238 URL |
[76] |
Xin X, Ito K, Dutta A, Kubo Y. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13206-13210.
doi: 10.1002/anie.201808154 URL |
[77] |
Zheng J X, Zhao Q, Tang T, Yin J F, Quilty C D, Renderos G D, Liu X T, Deng Y, Wang L, Bock D C, Jaye C, Zhang D H, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648.
doi: 10.1126/science.aax6873 URL |
[78] |
Zhang K, Yan Z H, Chen J. Electrodeposition accelerates metal-based batteries[J]. Joule, 2020, 4(1): 10-11.
doi: 10.1016/j.joule.2019.12.012 URL |
[79] |
Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage[J]. Nat. Mater., 2007, 6(11): 813-823.
pmid: 17972936 |
[80] |
Gundel A, Cagnon L, Gomes C, Morrone A, Schmidt J, Allongue P. In-situ magnetic measurements of electrodeposited ultrathin Co, Ni and Fe/Au(111) layers[J]. Phys. Chem. Chem. Phys., 2001, 3(16): 3330-3335.
doi: 10.1039/b100547m URL |
[81] |
Di N, Damian A, Maroun F, Allongue P. Influence of potential on the electrodeposition of Co on Au(111) by in situ STM and reflectivity measurements[J]. J. Electro-chem. Soc., 2016, 163(12): D3062-D3068.
doi: 10.1149/2.0091612jes URL |
[82] |
Cagnon L, Gundel A, Devolder T, Morrone A, Chappert C, Schmidt J E, Allongue P. Anion effect in Co/Au(111) electrodeposition: Structure and magnetic behavior[J]. Appl. Surf. Sci., 2000, 164: 22-28.
doi: 10.1016/S0169-4332(00)00330-5 URL |
[83] |
Jurca H F, Damian A, Gougaud C, Thiaudiere D, Cortes R, Maroun F, Allongue P. Epitaxial electrodeposition of Fe on Au(111): Structure, nucleation, and growth mechanisms[J]. J. Phys. Chem. C, 2016, 120(29): 16080-16089.
doi: 10.1021/acs.jpcc.5b12771 URL |
[84] |
Borges J G, Prod′homme P, Maroun F, Cortes R, Geshev J, Schmidt J E, Allongue P. Perpendicular anisotropy in electrodeposited Au/Co films[J]. Phys. B: Condensed Matter, 2006, 384(1-2): 138-140.
doi: 10.1016/j.physb.2006.05.174 URL |
[85] |
He Z, Gudavarthy R V, Koza J A, Switzer J A. Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films[J]. J. Am. Chem. Soc., 2011, 133(32): 12358-12361.
doi: 10.1021/ja203975z URL |
[86] |
He Z, Koza J A, Liu Y C, Chen Q Z, Switzer J A. Room-temperature electrochemical reduction of epitaxial Bi2O3 films to epitaxial Bi films[J]. RSC Adv., 2016, 6(99): 96832-96836.
doi: 10.1039/C6RA18098A URL |
[87] |
Chen L C, Dong J W, Schultz B D, Palmstrom C J, Berezovsky J, Isakovic A, Crowell P A, Tabat N. Epitaxial ferromagnetic metal/GaAs(100) heterostructures[J]. J. Vac. Sci. Technol. B, 2000, 18(4): 2057-2062.
doi: 10.1116/1.1306297 URL |
[88] |
Bao Z L, Kavanagh K L. Epitaxial Fe/GaAs via electrochemistry[J]. J. Appl. Phys., 2005, 98(6): 066103.
doi: 10.1063/1.2014939 URL |
[89] |
Norton D P. Synthesis and properties of epitaxial electronic oxide thin-film materials[J]. Mater. Sci. Eng. R Rep., 2004, 43(5-6): 139-247.
doi: 10.1016/j.mser.2003.12.002 URL |
[90] |
Pauporte T, Lincot D. Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride[J]. Appl. Phys. Lett., 1999, 75(24): 3817-3819.
doi: 10.1063/1.125466 URL |
[91] |
Pauporte T, Lincot D. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide[J]. Electrochim. Acta, 2000, 45(20): 3345-3353.
doi: 10.1016/S0013-4686(00)00405-9 URL |
[92] |
Richardson T J, Slack J L, Rubin M D. Electrochromism in copper oxide thin films[J]. Electrochim. Acta, 2001, 46 (13-14): 2281-2284.
doi: 10.1016/S0013-4686(01)00397-8 URL |
[93] |
Switzer J A, Kothari H M, Poizot P, Nakanishi S, Bohannan E W. Enantiospecific electrodeposition of a chiral catalyst[J]. Nature, 2003, 425(6957): 490-493.
doi: 10.1038/nature01990 URL |
[94] |
Bohannan E W, Nicic I M, Kothari H A, Switzer J A. Enantiospecific electrodeposition of chiral CuO films on Cu(110) from aqueous Cu(II) tartrate and amino acid complexes[J]. Electrochim. Acta, 2007, 53(1): 155-160.
doi: 10.1016/j.electacta.2007.01.040 URL |
[95] |
Kothari H M, Kulp E A, Boonsalee S, Nikiforov M P, Bohannan E W, Poizot P, Nakanishi S, Switzer J A. Enantiospecific electrodeposition of chiral CuO Films from copper(II) complexes of tartaric and amino acids on single-crystal Au(001)[J]. Chem. Mater., 2004, 16(22): 4232-4244.
doi: 10.1021/cm048939x URL |
[96] |
Gudavarthy R V, Burla N, Kulp E A, Limmer S J, Sinn E, Switzer J A. Epitaxial electrodeposition of chiral CuO films from copper(II) complexes of malic acid on Cu(111) and Cu(110) single crystals[J]. J. Mater. Chem., 2011, 21(17): 6209-6216.
doi: 10.1039/c0jm03423a URL |
[97] |
Brandt I S, Tumelero M A, Pelegrini S, Zangari G, Pasa A A. Electrodeposition of Cu2O: Growth, properties, and applications[J]. J. Solid State Electrochem., 2017, 21(7): 1999-2020.
doi: 10.1007/s10008-017-3660-x URL |
[98] |
Oba F, Ernst F, Yu Y S, Liu R, Kothari M, Switzer J A. Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates[J]. J. Am. Ceram. Soc., 2005, 88(2): 253-270.
doi: 10.1111/j.1551-2916.2005.00118.x URL |
[99] |
Wee S H, Huang P S, Lee J K, Goyal A. Heteroepitaxial Cu2O thin film solar cell on metallic substrates[J]. Sci. Rep., 2015, 5: 16272.
doi: 10.1038/srep16272 URL |
[100] |
Switzer J A, Gudavarthy R V, Kulp E A, Mu G J, He Z, Wessel A J. Resistance switching in electrodeposited magnetite superlattices[J]. J. Am. Chem. Soc., 2010, 132(4): 1258-1260.
doi: 10.1021/ja909295y pmid: 20055488 |
[101] |
Grunberg P A. Nobel Lecture: From spin waves to giant magnetoresistance and beyond[J]. Rev. Mod. Phys., 2008, 80(4): 1531-1540.
doi: 10.1103/RevModPhys.80.1531 URL |
[102] |
Switzer J A, Shane M J, Phillips R J. Electrodeposited ceramic superlattices[J]. Science, 1990, 247(4941): 444-446.
pmid: 17788610 |
[103] |
Spanger B, Schiessl U, Lambrecht A, Böttner H, Tacke M. Near-room-temperature operation of Pb1-xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques[J]. Appl. Phys. Lett., 1988, 53(26): 2582-2583.
doi: 10.1063/1.100208 URL |
[104] | Johnson T H. Lead salt detectors and arrays: PbS and PbSe[J]. P. Soc. Photo-Opt. Inst., 1984(443): 60-94. |
[105] |
Vertegel A A, Shumsky M G, Switzer J A. Epitaxial electrodeposition of lead sulfide on (100)-oriented single-crystal gold[J]. Angew. Chem. Int. Ed., 1999, 38(21): 3169-3171.
pmid: 10556891 |
[106] |
Beaunier L, Cachet H, Froment M. Epitaxial electrodeposition of lead selenide films on indium phosphide single crystals[J]. Mater. Sci. Semicond. Process., 2001, 4(5): 433-436.
doi: 10.1016/S1369-8001(01)00008-7 URL |
[107] |
Beaunier L, Cachet H, Cortes R, Froment M. Epitaxial electrodeposition of lead telluride films on indium phosphide single crystals[J]. J. Electroanal. Chem., 2002, 532(1-2): 215-218.
doi: 10.1016/S0022-0728(02)00758-1 URL |
[108] |
Boonsalee S, Gudavarthy R V, Bohannan E W, Switzer J A. Epitaxial electrodeposition of tin(II) sulfide nano-disks on single-crystal Au(100)[J]. Chem. Mater., 2008, 20(18): 5737-5742.
doi: 10.1021/cm801502m URL |
[109] |
Brownson J R S, Georges C, Larramona G, Jacob A, De-latouche B, Lévy-Clément C. Chemistry of tin monosulfide (δ-SnS) electrodeposition: Effects of pH and temperature with tartaric acid[J]. J. Electrochem. Soc., 2008, 155(1): D40-D46.
doi: 10.1149/1.2801867 URL |
[110] |
Shi D, Adinolfi V, Comin R, Yuan M J, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.
doi: 10.1126/science.aaa2725 URL |
[111] |
Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970.
doi: 10.1126/science.aaa5760 URL |
[112] |
Banik A, Tubbesing J Z, Luo B, Zhang X T, Switzer J A. Epitaxial electrodeposition of optically transparent hole-conducting CuI on n-Si(111)[J]. Chem. Mater., 2021, 33(9): 3220-3227.
doi: 10.1021/acs.chemmater.1c00110 URL |
[113] | Wijeyasinghe N, Eisner F, Tsetseris L, Lin Y H, Seitkhan A, Li J H, Yan F, Solomeshch O, Tessler N, Patsalas P, Anthopoulos T D. p-Doping of copper(I) thiocyanate (CuSCN) hole-transport layers for high-performance transistors and organic solar cells[J]. Adv. Funct. Mater., 2018, 28(31): 1802055. |
[1] | 王玉玺, 高丽茵, 万永强, 李哲, 刘志权. 应用于大马士革工艺的纳米孪晶铜脉冲电沉积研究[J]. 电化学(中英文), 2023, 29(8): 2209231-. |
[2] | 翟悦晖, 彭逸霄, 洪延, 陈苑明, 周国云, 何为, 王朋举, 陈先明, 王翀. 铜互连电镀中有机添加剂的合成与分析[J]. 电化学(中英文), 2023, 29(8): 2208111-. |
[3] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[4] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[5] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
[6] | 徐佳莹, 王守绪, 苏元章, 杜永杰, 齐国栋, 何为, 周国云, 张伟华, 唐耀, 罗毓瑶, 陈苑明. 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学(中英文), 2022, 28(7): 2213003-. |
[7] | 倪修任, 张雅婷, 王翀, 洪延, 陈苑明, 苏元章, 何为, 陈先明, 黄本霞, 续振林, 李毅峰, 李能彬, 杜永杰. 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学(中英文), 2022, 28(7): 2213008-. |
[8] | 张远航, 安茂忠, 杨培霞, 张锦秋. 数值模拟方法在周期换向脉冲电镀通孔中的应用[J]. 电化学(中英文), 2022, 28(6): 2104511-. |
[9] | 魏丽君, 周紫晗, 吴蕴雯, 李明, 王溯. 芯片钴互连及其超填充电镀技术的研究进展[J]. 电化学(中英文), 2022, 28(6): 2104431-. |
[10] | 杨凯, 陈际达, 陈世金, 许伟廉, 郭茂桂, 廖金超, 吴熷坤. 高深径比通孔脉冲电镀添加剂及电镀参数的优化[J]. 电化学(中英文), 2022, 28(6): 2104491-. |
[11] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[12] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[13] | 王昊, 曹晓舟, 薛向欣. 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2022, 28(4): 2103071-. |
[14] | 李江, 李作鹏, 白云峰, 罗宿星, 郭永, 鲍雅妍, 李容, 刘海燕, 冯锋. 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学(中英文), 2022, 28(1): 2104211-. |
[15] | 刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||