电化学(中英文) ›› 2022, Vol. 28 ›› Issue (1): 2104211. doi: 10.13208/j.electrochem.210421
所属专题: “电分析”专题文章
李江1, 李作鹏1, 白云峰1, 罗宿星2, 郭永1, 鲍雅妍1, 李容3, 刘海燕4, 冯锋1,*()
收稿日期:
2021-04-21
修回日期:
2021-06-30
出版日期:
2022-01-28
发布日期:
2021-08-03
通讯作者:
* Tel: (86-352)7158662, E-mail: Jiang Li1, Zuo-Peng Li1, Yun-Feng Bai1, Su-Xing Luo2, Yong Guo1, Ya-Yan Bao1, Rong Li3, Hai-Yan Liu4, Feng Feng1,*()
Received:
2021-04-21
Revised:
2021-06-30
Published:
2022-01-28
Online:
2021-08-03
摘要:
本文将3D纳米结构花状CoS电沉积在石墨烯胶带电极(GTE)上,制备了一种对葡萄糖响应良好的电化学传感器。结构分析显示电沉积的CoS均匀地分散在了电极上。实验结果表明,制备的花状CoS/GTE葡萄糖传感器在0.025 ~ 1.0 mmol·L-1显示出良好的线性关系,灵敏度为323.3 μA·(mmol·L -1)-1·cm-2,检出限为8.5 μmol·L -1 (S/N = 3),而且制备的传感器能够应用于血清葡萄糖的检测。这表明本文制备的传感器具有一定的应用潜力。
李江, 李作鹏, 白云峰, 罗宿星, 郭永, 鲍雅妍, 李容, 刘海燕, 冯锋. 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学(中英文), 2022, 28(1): 2104211.
Jiang Li, Zuo-Peng Li, Yun-Feng Bai, Su-Xing Luo, Yong Guo, Ya-Yan Bao, Rong Li, Hai-Yan Liu, Feng Feng. A Flexible Enzymeless Glucose Sensor via Electrodepositing 3D Flower-like CoS onto Self-Supporting Graphene Tape Electrode[J]. Journal of Electrochemistry, 2022, 28(1): 2104211.
Figure 3
(A) CVs of bare GTE and CoS/GTE in 0.1 mol·L-1 NaOH (scan rate: 50 mV·s-1). (B) CVs of CoS/GTE in 0.1 mol·L-1 NaOH at different scan rates from 10 to 100 mV·s-1. (C) The Plots of cathodic and anodic peak currents vs. square root of scan rate. (D) CVs of CoS/GTE from 0 to 1.0 mmol·L-1 glucose in 0.1 mol·L-1 NaOH (scan rate: 50 mV·s-1). (color on line)
Figure 4
(A) Amperometric current responses of the CoS/GTE at different applied potentials (0.45, 0.50 V and 0.55 V) with different concentrations of glucose in 0.1 mol·L-1 NaOH. (B) Amperometric current responses of the CoS/GTE with successive addition of glucose in 0.1 mol·L-1 NaOH at 0.50 V. (C) The corresponding calibration curve for current responses to various glucose concentrations from 0.025 to 9.0 mmol·L-1 at 0.50 V. Inset shows the corresponding calibration curve established between response current and glucose concentration from 0.025 to 1.0 mmol·L-1. (D) Amperometric current responses of the CoS/GTE against the addition of glucose (1.0 mmol·L-1) and various co-existing interferents (0.1 mmol·L-1, respectively) injected into in 0.1 mol·L-1 NaOH at 0.50 V.(color on line)
Table 1
Comparison of analytical performances for different Co-based sensors.
Electrode material | Method | Sensitivity (μA·cm-2·(mmol·L-1)-1) | Linear range/ (mmol·L-1) | Test Potential/V | Detection Limit/ (μmol·L-1) | Flexible substrate | Ref. |
---|---|---|---|---|---|---|---|
CoS | Hydrothermal method | 139.35; 28.44 | 0.005 ~ 1.10; 1.20 ~ 10.20 | 0.20 | 1.5 | No | [ |
CoS/3D porous carbon skeleton | Hydrothermal method | 679 | 0.01 ~ 0.9 | 0.45 | 2 | No | [ |
CoxSy/ rGO-PEDOT | CV | 113.46 | 0.0002 ~ 1.380 | 0.65 | 0.079 | No | [ |
Nickel-cobalt phosphate | Hydrothermal method | 302.99 | 0.002 ~ 4.47 | 0.55 | 0.4 | No | [ |
NiCo2S4/Ni/CFP | CV | 283 | 0.0005 ~ 6 | 0.45 | 0.05 | Yes | [ |
3D graphene frameworks/ Co3O4 composites | Sol-gel | 122.16 | 0.025 ~ 0.080 | 0.58 | 0.157 | No | [ |
CoTsPc | - | 122.5 | 0.01 ~ 6.34 | - | 0.14 | No | [ |
CoOOH nanosheets | Redox reaction | 341 | 0.03 ~ 0.7 | 0.4 | 30.9 | No | [ |
CoP | Precipitation method | 116.8 | 0.5 ~ 5.5 | 9 | No | [ | |
CoS/GTE | CA | 323.3 | 0.025 ~ 1.0 | 0.5 | 8.5 | Yes | This work |
[1] |
Rahman M M, Ahammad A J S, Jin J H, Ahn S J, Lee J J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides[J]. Sensors, 2010, 10(5): 4855-4866.
doi: 10.3390/s100504855 URL |
[2] |
Desmet C, Marquette C A, Blum L J, Doumèche B. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells[J]. Biosens. Bioelectron. 2016, 76(SI): 145-163.
doi: 10.1016/j.bios.2015.06.052 URL |
[3] |
Gabriel E F M, Garcia P T, Cardoso T M G, Lopes F M, Martins F T, Coltro W K T. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices[J]. Analyst, 2016, 141(15): 4749-4756.
doi: 10.1039/c6an00430j pmid: 27272206 |
[4] |
Hwang D W, Lee S, Seo M, Chung T D. Recent advances in electrochemical non-enzymatic glucose sensors - a review[J]. Anal. Chim. Acta, 2018, 1033: 1-34.
doi: 10.1016/j.aca.2018.05.051 URL |
[5] |
Qiu H W, Xu S C, Jiang S Z, Li Z, Chen P X, Gao S S, Zhang C, Feng D J. A novel graphene-based tapered optical fiber sensor for glucose detection[J]. Appl. Surf. Sci., 2015, 329: 390-395.
doi: 10.1016/j.apsusc.2014.12.093 URL |
[6] |
Nicholas D, Logan K A, Sheng Y J, Gao J H, Farrell S, Dixon D, Callan B, McHale A P, Callan J F. Rapid paper based colorimetric detection of glucose using a hollow microneedle device[J]. Int. J. Pharm., 2018, 547(1-2): 244-249.
doi: 10.1016/j.ijpharm.2018.06.002 URL |
[7] |
Shoji A, Takahashi Y, Osato S, Sugawara M. An enzyme-modified capillary as a platform for simultaneous fluorometric detection of D-glucose and L-lactate[J]. Pharm. Biomed. Anal., 2019, 163: 1-8.
doi: 10.1016/j.jpba.2018.09.028 URL |
[8] |
Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Anal. Chem., 2015, 87(1): 230-249.
doi: 10.1021/ac5039863 URL |
[9] |
Mohamad N R, Marzuki N H C, Buang N A, Huyop F, Wahab R A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnol. Biotechnol. Equip., 2015, 29(2): 205-220.
doi: 10.1080/13102818.2015.1008192 URL |
[10] |
Yu Y Y, Yang Y, Gu H, Zhou T S, Shi G Y. Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate[J]. Biosens. Bioelectron., 2013, 41: 511-518.
doi: 10.1016/j.bios.2012.09.055 URL |
[11] |
Ye J S, Chen C W, Lee C L. Pd nanocube as non-enzymatic glucose sensor[J]. Sensor Actuat. B - Chem., 2015, 208: 569-574.
doi: 10.1016/j.snb.2014.11.091 URL |
[12] | Malhotra S, Tang Y J, Varshney P K. Non-enzymatic glucose sensor based on electrodeposition of platinum particles on polyaniline modified Pt electrode[J]. Anal. Bioanal. Electrochem., 2018, 10(6): 699-715. |
[13] |
Wang R L, Liang X Y, Liu H Y, Cui L, Zhang X Y, Liu C J. Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles[J]. Microchim. Acta, 2018, 185(7): 339.
doi: 10.1007/s00604-018-2866-7 URL |
[14] |
Shim K, Lee W C, Park M S, Shahabuddin M, Yamauchi Y, Hossain M S A, Shim Y B, Kim J H. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction[J]. Sensor Actuat. B - Chem., 2019, 278: 88-96.
doi: 10.1016/j.snb.2018.09.048 URL |
[15] |
Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects[J]. Biosens. Bioelectron., 2016, 80: 171-174.
doi: 10.1016/j.bios.2016.01.056 URL |
[16] |
Sheng Q, Mei H, Wu H M, Zhang X H, Wang S F. A highly sensitive non-enzymatic glucose sensor based on PtxCo1-x/C nanostructured composites[J]. Sensor Actuat. B - Chem., 2015, 207: 51-58.
doi: 10.1016/j.snb.2014.09.079 URL |
[17] |
Koskun Y, Savk A, Sen B, Sen F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites[J]. Anal. Chim. Acta, 2018, 1010: 37-43.
doi: 10.1016/j.aca.2018.01.035 URL |
[18] |
Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synjournal, properties and applications in energy conversion and storage[J]. Mater. Chem., 2012, 22(1): 19-30.
doi: 10.1039/C1JM13879K URL |
[19] |
Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv. Mater., 2016, 28(2): 215-230.
doi: 10.1002/adma.201502696 URL |
[20] |
Wu W Q, Yu B B, Wu H M, Wang S F, Xia Q H, Ding Y. Synjournal of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose[J]. Mater. Sci. Eng. C, 2017, 70: 430-443.
doi: 10.1016/j.msec.2016.08.084 URL |
[21] |
Qu P P, Gong Z N, Cheng H Y, Xiong W, Wu X, Pei P, Zhao R F, Zeng Y, Zhu Z H. Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor[J]. RSC Adv., 2015, 5(129): 106661-106667.
doi: 10.1039/C5RA22495K URL |
[22] |
Meng A, Sheng L Y, Zhao K, Li Z J. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide-poly(3,4-ethylenedioxythiophene) composite through electro-deposition for non-enzyme glucose sensing[J]. Mater. Chem. B, 2017, 5(45): 8934-8943.
doi: 10.1039/C7TB02482G URL |
[23] |
Sivakumar M, Sakthivel M, Chen S M. Simple synjournal of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples[J]. J. Colloid Interface Sci., 2017, 490: 719-726.
doi: 10.1016/j.jcis.2016.11.094 URL |
[24] |
Kang Z, Li Y, Cao S Y, Zhang Z H, Guo H J, Wu P W, Zhou L X, Zhang S C, Zhang X M, Zhang Y. 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing[J]. Inorg. Chem. Front., 2018, 5(2): 364-369.
doi: 10.1039/C7QI00669A URL |
[25] |
Niu J A, Domenech-Carbo A, Primoa A, Garcia H. Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation[J]. RSC Adv., 2019, 9(1): 99-106.
doi: 10.1039/C8RA08745H URL |
[26] |
Han W J, Ren L, Gong L J, Qi X, Liu Y D, Yang L W, Wei X L, Zhong J X. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J]. ACS Sustainable Chem. Eng., 2014, 2(4): 741-748.
doi: 10.1021/sc400417u URL |
[27] |
Chen D M, Yang J J, Zhu Y, Zhang Y M, Zhu Y F. Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance[J]. Appl. Catal. B - Environ., 2018, 233: 202-212.
doi: 10.1016/j.apcatb.2018.04.004 URL |
[28] |
Chen D, Zhang H, Liu Y, Li J H. Graphene and its deriva-tives for the development of solar cells, photoelectrochemical, and photocatalytic applications[J]. Energy Environ. Sci., 2013, 6(5): 1362-1387.
doi: 10.1039/c3ee23586f URL |
[29] |
Baig N, Saleh T A. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications[J]. Microchim. Acta, 2018, 185(6): 283.
doi: 10.1007/s00604-018-2809-3 URL |
[30] |
Ito Y, Tanabe Y, Sugawara K, Koshino M, Takahashi T, Tanigaki K., Aokighi H, Chen M W. Three-dimensional porous graphene networks expand graphene-based electronic device applications[J]. Phys. Chem. Chem. Phys., 2018, 20(9): 6024-6033.
doi: 10.1039/C7CP07667C URL |
[31] |
Wang L, Yu J, Zhang Y Y, Yang H, Miao L F, Song Y H. Simple and large-scale strategy to prepare flexible graphene tape electrode[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 9089-9095.
doi: 10.1021/acsami.6b14624 URL |
[32] |
Lange B, Lovric M, Scholz F. The catalytic action of adsorbed thiocyanate ions and thiourea in the electron transfer from glassy carbon to solid copper(I) selenide and copper(I) sulfide particles[J]. Electroanal. Chem., 1996, 418(1-2): 21-28.
doi: 10.1016/S0022-0728(96)04850-4 URL |
[33] |
Nan K K, Du H F, Su L, Li C M. Directly electrodeposited cobalt sulfide nanosheets as advanced catalyst for oxygen evolution reaction[J]. ChemistrySelect, 2018, 3(25): 7081-7088.
doi: 10.1002/slct.201801482 URL |
[34] |
Gao R, Liu L, Hu Z B, Zhang P, Cao X Z, Wang B Y, Liu X F. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries[J]. Mater. Chem. A, 2015, 3(34): 17598-17605.
doi: 10.1039/C5TA03885E URL |
[35] |
Mao M L, Jiang L, Wu L C, Zhang M, Wang T H. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Mater. Chem. A, 2015, 3(25): 13384-13389.
doi: 10.1039/C5TA01501D URL |
[36] |
Shi J H, Li X C, He G H, Zhang L, Li M. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. Mater. Chem. A, 2015, 3(41): 20619-20626.
doi: 10.1039/C5TA04464B URL |
[37] |
Bahadur S, Gong D L. The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2[J]. Wear, 1993, 160(1): 131-138.
doi: 10.1016/0043-1648(93)90414-H URL |
[38] |
Huang K J, Zhang J Z, Shi G W, Liu Y M. One-step hydrothermal synjournal of two-dimensional cobalt sulfide for high-performance supercapacitors[J]. Mater. Lett., 2014, 131: 45-48.
doi: 10.1016/j.matlet.2014.05.148 URL |
[39] |
Liu Y W, Cao X Q, Kong R M, Du G, Asiri A M, Lu Q, Sun X P. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing[J]. Mater. Chem. B, 2017, 5: 1901-1904.
doi: 10.1039/C6TB02882A URL |
[40] |
Chakrabartty S, Karmakar S, Raj C R. An electrocatalytically active nanoflake-like Co9S8-CoSe2 heterostructure for overall water splitting[J]. ACS Appl. Nano Mater., 2020, 3(11): 11326-11334.
doi: 10.1021/acsanm.0c02431 URL |
[41] |
Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Anal. Chim. Acta, 2006, 556(1): 46-57.
doi: 10.1016/j.aca.2005.05.080 URL |
[42] |
Shu Y, Li B, Chen J Y, Xu Q, Pang H, Hu X Y. Facile synjournal of ultrathin nickel-cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2360-2367.
doi: 10.1021/acsami.7b17005 URL |
[43] |
Babu K J, Kumar T R, Yoo D J, Phang S M, Kumar G G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications[J]. ACS Sustainable Chem. Eng., 2018, 6(12): 16982-16989.
doi: 10.1021/acssuschemeng.8b04340 URL |
[44] |
Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y S, Ou E C, Xu W J. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection[J]. Small, 2017, 13(5): 1602077.
doi: 10.1002/smll.v13.5 URL |
[45] |
Devasenathipathy R, Karuppiah C, Chen S M, Palanisamy S, Lou B S, Ali M A, Al-Hemaid F M A. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine[J]. RSC Adv., 2015, 5(34): 26762-26768.
doi: 10.1039/C4RA17161F URL |
[46] |
Lee K K, Loh P Y, Sow C H, Chin W S. CoOOH nano-sheets on cobalt substrate as a non-enzymatic glucose sensor[J]. Electrochem. Comm., 2012, 20: 128-132.
doi: 10.1016/j.elecom.2012.04.012 URL |
[47] |
Sun Q Q, Wang M, Bao S J, Wang Y C, Gu S. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection[J]. Analyst, 2016, 141(1): 256-260.
doi: 10.1039/C5AN01928A URL |
[1] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[2] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[3] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
[4] | 黄葵, 黄容姣, 刘素琴, 何震. 电子功能外延薄膜的电沉积[J]. 电化学(中英文), 2022, 28(7): 2213006-. |
[5] | 倪修任, 张雅婷, 王翀, 洪延, 陈苑明, 苏元章, 何为, 陈先明, 黄本霞, 续振林, 李毅峰, 李能彬, 杜永杰. 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学(中英文), 2022, 28(7): 2213008-. |
[6] | 魏丽君, 周紫晗, 吴蕴雯, 李明, 王溯. 芯片钴互连及其超填充电镀技术的研究进展[J]. 电化学(中英文), 2022, 28(6): 2104431-. |
[7] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[8] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[9] | 王昊, 曹晓舟, 薛向欣. 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2022, 28(4): 2103071-. |
[10] | 刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404. |
[11] | Dylan Siltamaki, 陈帅, Farnood Pakravan, Jacek Lipkowski, 陈爱成. 纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究[J]. 电化学(中英文), 2021, 27(3): 278-290. |
[12] | 吴丽文, 王玮, 黄逸凡. 应用镍超微电极的电化学表面增强拉曼光谱技术研究[J]. 电化学(中英文), 2021, 27(2): 208-215. |
[13] | 吴丹丹, 吴旭. 钛基氧化铱电极电沉积制备技术研究进展[J]. 电化学(中英文), 2021, 27(1): 35-44. |
[14] | 彭思源, 杨实润, 周静红, 隋志军, 章涛, 石易, 周兴贵. BC/CoNi2S4@PPy柔性复合电极材料的制备及电化学性能[J]. 电化学(中英文), 2021, 27(1): 14-25. |
[15] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||