[1] |
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4): 16013.
doi: 10.1038/natrevmats.2016.13
URL
|
[2] |
Li M, Lu J, Chen Z, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33): 1800561.
doi: 10.1002/adma.201800561
URL
|
[3] |
Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. J. Power Sour-ces, 2011, 196(1): 13-24.
|
[4] |
Zhang W J. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(3): 877-885.
doi: 10.1016/j.jpowsour.2010.08.114
URL
|
[5] |
Obrovac M N, Chevrier V L. Alloy negative electrodes for Li-ion batteries[J]. Chem. Rev., 2014, 114(23): 11444-11502.
doi: 10.1021/cr500207g
pmid: 25399614
|
[6] |
Kasavajjula U, Wang C S, Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. J. Power Sources, 2007, 163(2): 1003-1039.
doi: 10.1016/j.jpowsour.2006.09.084
URL
|
[7] |
McDowell M T, Lee S W, Nix W D, Cui Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Adv. Mater., 2013, 25(36): 4966-4984.
doi: 10.1002/adma.201301795
URL
|
[8] |
Liang B, Liu Y P, Xu Y H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. J. Power Sources, 2014, 267: 469-490.
doi: 10.1016/j.jpowsour.2014.05.096
URL
|
[9] |
Obrovac M N. Si-alloy negative electrodes for Li-ion batteries[J]. Curr. Opin. Electrochem., 2018, 9: 8-17.
|
[10] |
Chen T, Wu J, Zhang Q L, Su X. Recent advancement of SiOx based anodes for lithium-ion batteries[J]. J. Power Sources, 2017, 363: 126-144.
doi: 10.1016/j.jpowsour.2017.07.073
URL
|
[11] |
Wu Y K(吴永康), Fu R S(傅儒生), Liu Z P(刘兆平), Xia Y G(夏永高), Shao G J(邵光杰). Development of silicon suboxide anodes for lithium-ion batteries[J]. J. Chin. Ceram. SOC.(硅酸盐学报), 2018, 46(11):1645-1652.
|
[12] |
Liu Z H, Yu Q, Zhao Y L, He R H, Xu M, Feng S H, Li S D, Zhou L, Mai L Q. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chem. Soc. Rev., 2019, 48(1): 285-309.
doi: 10.1039/C8CS00441B
URL
|
[13] |
Jiao M L, Wang Y F, Ye C L, Wang C Y, Zhang W K, Liang C. High-capacity SiOx (0 ≤ x ≤2) as promising anode materials for next-generation lithium-ion batteries[J]. J. Alloys Compd., 2020, 842: 155774.
doi: 10.1016/j.jallcom.2020.155774
URL
|
[14] |
Ohzuku T, Matoba N, Sawai K. Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry[J]. J. Power Sources, 2001, 97-98: 73-77.
doi: 10.1016/S0378-7753(01)00590-0
URL
|
[15] |
Hahn M, Buqa H, Ruch P W, Goers D, Spahr M E, Ufheil J, Novák P, Kötz R. A dilatometric study of lithium intercalation into powder-type graphite electrodes[J]. Electro-chem. Solid-State Lett., 2008, 11(9): A151-A154.
|
[16] |
Rieger B, Schlueter S, Erhard S V, Schmalz J, Reinhart G, Jossen A. Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery[J]. J. Energy Storage, 2016, 6: 213-221.
doi: 10.1016/j.est.2016.01.006
URL
|
[17] |
Rieger B, Erhard S V, Rumpf K, Jossen A. A new method to model the thickness change of a commercial pouch cell during discharge[J]. J. Electrochem. Soc., 2016, 163(8): A1566-A1575.
doi: 10.1149/2.0441608jes
URL
|
[18] |
Jones E M C, Çapraz ÖÖ, White S R, Sottos N R. Reversible and irreversible deformation mechanisms of composite graphite electrodes in lithium-ion batteries[J]. J. Electrochem. Soc., 2016, 163(9): A1965-A1974.
doi: 10.1149/2.0751609jes
URL
|
[19] |
Bauer M, Wachtler M, Stöwe H, Persson J V, Danzer M A. Understanding the dilation and dilation relaxation behavior of graphite-based lithium-ion cells[J]. J. Power So-urces, 2016, 317: 93-102.
|
[20] |
Sauerteig D, Ivanov S, Reinshagen H, Bund A. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry[J]. J. Power Sources, 2017, 342: 939-946.
doi: 10.1016/j.jpowsour.2016.12.121
URL
|
[21] |
Kim T, Park S, Oh S M. Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction me-chanism in SiO electrode[J]. J. Electrochem. Soc., 2007, 154(12): A1112-A1117.
doi: 10.1149/1.2790282
URL
|
[22] |
Louli A J, Li J, Trussler S, Fell C R, Dahn J R. Volume, pressure and thickness evolution of Li-ion pouch cells with silicon-composite negative electrodes[J]. J. Electro-chem. Soc., 2017, 164(12): A2689-A2696.
doi: 10.1149/2.1691712jes
URL
|
[23] |
Louli A J, Ellis L D, Dahn J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761.
doi: 10.1016/j.joule.2018.12.009
|
[24] |
Zhang X Y, He J, Zhou J, Chen H S, Song W L, Fang D N. Thickness evolution of commercial Li-ion pouch cells with silicon-based composite anodes and NCA cathodes[J]. Sci. China Techonl. Sci., 2021, 64(1): 83-90.
|
[25] |
Reimers J N, Dahn J R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2[J]. J. Electrochem. Soc., 1992, 139(8): 2091-2097.
doi: 10.1149/1.2221184
URL
|