电化学(中英文) ›› 2021, Vol. 27 ›› Issue (3): 278-290. doi: 10.13208/j.electrochem.201253
Dylan Siltamaki, 陈帅, Farnood Pakravan, Jacek Lipkowski, 陈爱成*()
收稿日期:
2021-02-22
修回日期:
2021-04-16
出版日期:
2021-06-28
发布日期:
2021-06-28
通讯作者:
陈爱成
E-mail:aicheng@uoguelph.ca
Dylan Siltamaki, Shuai Chen, Farnood Rahmati, Jacek Lipkowski, Ai-Cheng Chen*()
Received:
2021-02-22
Revised:
2021-04-16
Published:
2021-06-28
Online:
2021-06-28
Contact:
Ai-Cheng Chen
E-mail:aicheng@uoguelph.ca
摘要:
利用可再生清洁能源将CO2转化为CO和其他小分子是合成含碳燃料的可观方法之一。间歇性可再生能源存储的重要策略之一是将二氧化碳进行电化学还原。选择具有高活性和稳定性的电催化剂对于电化学还原CO2至关重要。在这项研究中,我们使用简单的电沉积方法合成了具有纳米晶枝状结构的CuAu合金电极。各项表征显示原子比约为1:1的CuAu纳米枝晶对CO2的电化学还原具有出色的催化活性。合成的主要产物是H2和CO,这是合成气体是合成天然气,氨和甲醇合成的中间体。电化学阻抗谱(EIS)测量表明,相对于Cu和Au电沉积催化剂,CuAu纳米晶枝状催化剂具有相对低的电荷转移阻力。CuAu纳米枝晶催化剂是一种具有潜在的转化CO2为合成气体的高活性电催化剂。
Dylan Siltamaki, 陈帅, Farnood Pakravan, Jacek Lipkowski, 陈爱成. 纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究[J]. 电化学(中英文), 2021, 27(3): 278-290.
Dylan Siltamaki, Shuai Chen, Farnood Rahmati, Jacek Lipkowski, Ai-Cheng Chen. Synthesis and Electrochemical Study of CuAu Nanodendrites for CO2 Reduction[J]. Journal of Electrochemistry, 2021, 27(3): 278-290.
Figure 2
SEM images of the nanostructured catalysts produced using an electrodeposition potential of -1.0 V vs. SCE and electrolytes containing (A) 10.0 mmol·L-1 CuSO4, (B) 7.5 mmol·L-1 CuSO4 and 2.5 mmol·L-1 HAuCl4 (CuAu(i)), (C) 5.0 mmol·L-1 CuSO4 and 5.0 mmol·L-1 HAuCl4 (CuAu(ii)), (D) 2.5 mmol·L-1 CuSO4 and 7.5 mmol·L-1 HAuCl4 (CuAu(iii)), and (E) 10.0 mmol·L-1 HAuCl4, with their respective EDX spectra (F).
[1] |
Hossain M N, Wen J L, Chen A C. Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide[J]. Sci. Rep., 2017, 7(1): 3184-3193.
doi: 10.1038/s41598-017-03601-3 pmid: 28600564 |
[2] |
Zhang D B, Tao Z T, Feng F L, He B B, Zhou W, Sun J, Xu J M, Wang Q, Zhao L. High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate[J]. Electrochim. Acta., 2020, 334: 135563.
doi: 10.1016/j.electacta.2019.135563 URL |
[3] |
Huang J Z, Guo X R, Huang X J, Wang L S. Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding electrocatalytic CO2 reduction to formate[J]. Electrochim. Acta., 2019, 325: 134923.
doi: 10.1016/j.electacta.2019.134923 URL |
[4] | Ensafi A A, Alinajafi H A, Rezaei B. Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol[J]. J. Electroanal. Chem., 2016, 78: 382-89. |
[5] |
Ye S T, Fan G L, Xu J J, Yang L, Li F. Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region[J]. Electrochim. Acta., 2020, 334: 135583.
doi: 10.1016/j.electacta.2019.135583 URL |
[6] |
Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling[J]. Nat. Catal., 2019, 2(8): 648-658.
doi: 10.1038/s41929-019-0306-7 URL |
[7] |
Gao D, Arán-Ais R M, Jeon H S, Roldan Cuenya B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nat. Catal., 2019, 2(3): 198-210.
doi: 10.1038/s41929-019-0235-5 URL |
[8] |
Zhu S Q, Wang Q, Qin X P, Gu M, Tao R, Lee B P, Zhang L L, Yao Y Z, Li T H, Shao M H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction[J]. Adv. Energ. Mater., 2018, 8(32): 1802238.
doi: 10.1002/aenm.v8.32 URL |
[9] |
Xu S, Carter E A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction[J]. Chem. Rev., 2018, 119(11): 6631-6669.
doi: 10.1021/acs.chemrev.8b00481 URL |
[10] |
Raciti D, Wang C. Electrochemical alternative to Fischer-Tropsch[J]. Nat. Catal., 2018, 1(10): 741-742.
doi: 10.1038/s41929-018-0160-z URL |
[11] |
De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todoroviĉ P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.
doi: 10.1038/s41929-017-0018-9 URL |
[12] |
Yi Q, Li W Y, Feng J, Xie K C. Carbon cycle in advanced coal chemical engineering[J]. Chem. Soc. Rev., 2015, 44(15): 5409-5445.
doi: 10.1039/C4CS00453A URL |
[13] |
Bui M, Adjiman C S, Bardow A, Anthony E J, Boston A, Brown S, Fennell P S, Fuss S, Galindo A, Hackett L A, Hallett J P, Herzog H J, Jackson G, Kemper J, Krevor S, Maitland G C, Matuszewski M, Metcalfe I S, Petit C, Puxty G, Reimer J, Reiner D M, Rubin E S, Scott S A, Shah N, Smit B, Trusler J P M, Webley P, Wilcox J, Mac Dowell N. Carbon capture and storage (CCS): the way forward[J]. Energ. Environ. Sci., 2018, 11(5): 1062-1176.
doi: 10.1039/C7EE02342A URL |
[14] |
Ho H J, Iizuka A, Shibata E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Ind. Eng. Chem. Res., 2019, 58(21): 8941-8954.
doi: 10.1021/acs.iecr.9b01213 URL |
[15] |
Hurst T F, Cockerill T T, Florin N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energ. Environ. Sci., 2012, 5(5): 7132-7150.
doi: 10.1039/c2ee21204h URL |
[16] |
Lamaison S, Wakerley D, Montero D, Rousse G, Taverna D, Giaume D, Mercier D, Blanchard J, Tran H N, Fontecave M, Mougel V. Zn-Cu alloy nanofoams as efficient catalysts for the reduction of CO2 to syngas mixtures with a potential-independent H2/CO ratio[J]. ChemSusChem, 2019, 12(2): 511-517.
doi: 10.1002/cssc.v12.2 URL |
[17] |
Chen P, Jiao Y, Zhu Y H, Chen S-M, Song L, Jaroniec M, Zheng Y, Qiao S Z. Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density[J]. J. Mater. Chem. A, 2019, 7(13): 7675-7682.
doi: 10.1039/C9TA01932D URL |
[18] |
Pletcher D. The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review[J]. Electrochem. Commun., 2015, 61(1): 97-101.
doi: 10.1016/j.elecom.2015.10.006 URL |
[19] |
Qiao J L, Liu Y Y, Hong F, Zhang J J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem. Soc. Rev., 2014, 43(2): 631-675.
doi: 10.1039/C3CS60323G URL |
[20] |
Tryk D A, Fujishima A. Global warming electrochemists enlisted in war: the carbon dioxide reduction battle[J]. Electrochem. Soc. Interface, 2001, 10(1): 32-36.
doi: 10.1149/2.F07011IF URL |
[21] |
Chaplin R P S, Wragg A A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation[J]. J. Appl. Electrochem., 2003, 33(12): 1107-1123.
doi: 10.1023/B:JACH.0000004018.57792.b8 URL |
[22] | Li J H (李金翰), Cheng F Y (程方益). Electrolyte tailoring for electrocatalytic reduction of stable molecules[J]. J. Electrochem.(电化学), 2020, 26(4): 474-485. |
[23] |
Ross M B, Dinh C T, Li Y, Kim D, De Luna P, Sargent E H, Yang P. Tunable Cu enrichment enables designer syngas electrosynjournal from CO2[J]. J. Am. Chem. Soc., 2017, 139(27): 9359-9363.
doi: 10.1021/jacs.7b04892 URL |
[24] |
Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocataly-tic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta., 1994, 39(11): 1833-1839.
doi: 10.1016/0013-4686(94)85172-7 URL |
[25] |
Furuya N, Yamazaki T, Shibata M. High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes[J]. J. Electroanal. Chem., 1997, 431(1): 39-41.
doi: 10.1016/S0022-0728(97)00159-9 URL |
[26] | Zhang T, Verma S, Kim S, Fister T T, Kenis P J A, Gewirth A A. Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane[J]. J. Ele-ctroanal. Chem., 2020, 875: 113862. |
[27] | Yang F (杨帆), Deng P L (邓培林), Han Y J (韩优嘉), Pan J (潘静), Xiao B Y (夏宝玉). Copper-based compounds for electrochemical reduction of carbon dioxide[J]. J. Ele-ctrochem.(电化学), 2019, 25(4): 426-444. |
[28] | Zhang X R (张旭锐), Liu Y Y (刘予宇), Shao X L (邵晓琳), Yi J (易金), Zhang J J (张久俊). Challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. J. Electrochem.(电化学), 2019, 25(4): 413-425. |
[29] |
Welch A J, DuChene J S, Tagliabue G, Davoyan A, Cheng W H, Atwater H A. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS Appl. Energ. Mater., 2019, 2(1): 164-170.
doi: 10.1021/acsaem.8b01570 URL |
[30] |
Zhu W L, Michalsky R, Metin Ö, Lv H, Guo S, Wright C J, Sun X, Peterson A A, Sun S H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. J. Am. Chem. Soc., 2013, 135(45): 16833-16836.
doi: 10.1021/ja409445p URL |
[31] |
Chen Y, Li C W, Kanan M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(49): 19969-19972.
doi: 10.1021/ja309317u URL |
[32] |
Nesbitt N T, Ma M, Trzešniewski B J, Jaszewski S, Tafti F, Burns M J, Smith W A, Naughton M J. Au dendrite electrocatalysts for CO2 electrolysis[J]. J. Phys. Chem. C, 2018, 122(18): 10006-10016.
doi: 10.1021/acs.jpcc.8b01831 URL |
[33] |
Wen X S, Chang L, Gao Y, Han J Y, Bai Z M, Huan Y H, Li M H, Tang Z Y, Yan X Q. A reassembled nanoporous gold leaf electrocatalyst for efficient CO2 reduction towards CO[J]. Inorg. Chem. Front., 2018, 5(5): 1207-1212.
doi: 10.1039/C8QI00023A URL |
[34] |
Zhu W L, Zhang Y J, Zhang H Y, Lv H F, Li Q, Michalsky R, Peterson A A, Sun S H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. J. Am. Chem. Soc., 2014, 136(46): 16132-16135.
doi: 10.1021/ja5095099 URL |
[35] |
Chen C Z, Zhang B, Zhong J H, Cheng Z M. Selective electrochemical CO2 reduction over highly porous gold films[J]. J. Mater. Chem. A, 2017, 5(41): 21955-21964.
doi: 10.1039/C7TA04983H URL |
[36] |
Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. J. Am. Chem. Soc., 2017, 139(11): 4052-4061.
doi: 10.1021/jacs.6b12217 URL |
[37] |
Narayanaru S, Chinnaiah J, Phani K L, Scholz F. pH dependent CO adsorption and roughness-induced selectivity of CO2 electroreduction on gold surfaces[J]. Electrochim. Acta., 2018, 264: 269-274.
doi: 10.1016/j.electacta.2018.01.106 URL |
[38] |
Chen S, Chen A C. Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study[J]. J. Phys. Chem. C, 2019, 123(39): 23898-23906.
doi: 10.1021/acs.jpcc.9b04080 URL |
[39] |
Hossain M N, Liu Z, Wen J L, Chen A C. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide[J]. Appl. Catal. B, 2018, 236: 483-489.
doi: 10.1016/j.apcatb.2018.05.053 URL |
[40] |
Dong H, Li Y, Jiang D E. First-principles insight into electrocatalytic reduction of CO2 to CH4 on a copper nanoparticle[J]. J. Phys. Chem. C, 2018, 122(21): 11392-11398.
doi: 10.1021/acs.jpcc.8b01928 URL |
[41] |
Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams[J]. ACS Catal., 2014, 4(9): 3091-3095.
doi: 10.1021/cs500522g URL |
[42] |
Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Lett., 2018, 3(7): 1545-1556.
doi: 10.1021/acsenergylett.8b00553 URL |
[43] |
Mistry H, Varela A S, Bonifacio C S, Zegkinoglou I, Sinev I, Choi Y W, Kisslinger K, Stach E A, Yang J C, Strasser P, Cuenya B R. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nat. Commun., 2016, 7(1): 12123.
doi: 10.1038/ncomms12123 URL |
[44] | Dai L, Qin Q, Wang P, Zhao X J, Hu C Y, Liu P X, Qin R X, Chen M, Ou D H, Xu C F, Mo S G, Wu B H, Fu G, Zhang P, Zheng N F. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Sci. Adv., 2017, 3(9): e1701069. |
[45] |
Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Lett., 2015, 15(10): 6829-6835.
doi: 10.1021/acs.nanolett.5b03298 pmid: 26352048 |
[46] |
Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J. Am. Chem. Soc., 2012, 134(17): 7231-7234.
doi: 10.1021/ja3010978 URL |
[47] |
Ren D, Deng Y, Handoko A D, Chen C S, Malkhandi S, Yeo B S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts[J]. ACS Catal., 2015, 5(5): 2814-2821.
doi: 10.1021/cs502128q URL |
[48] | Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. J. Chem. Soc., Faraday Trans.1, 1989, 85(8): 2309-2326. |
[49] |
Kas R, Kortlever R, Yilmaz H, Koper M T M, Mul G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem, 2015, 2(3): 354-358.
doi: 10.1002/celc.v2.3 URL |
[50] |
Velasco-Vélez J-J, Jones T, Gao D, Carbonio E, Arrigo R, Hsu C J, Huang Y C, Dong C L, Chen J M, Lee J F, Strasser P, Roldan Cuenya B, Schlögl R, Knop-Gericke A, Chuang C H. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons[J]. ACS Sustain. Chem. Eng., 2019, 7(1): 1485-1492.
doi: 10.1021/acssuschemeng.8b05106 URL |
[51] |
Nur Hossain M, Chen S, Chen A. Thermal-assisted synjournal of unique Cu nanodendrites for the efficient electrochemical reduction of CO2[J]. Appl. Catal. B, 2019, 259: 118096-118104.
doi: 10.1016/j.apcatb.2019.118096 URL |
[52] |
Hossain M N, Wen J L, Konda S K, Govindhan M, Chen A C. Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film[J]. Electrochem. Commun., 2017, 82: 16-20.
doi: 10.1016/j.elecom.2017.07.006 URL |
[53] | Zhang B H (张宝花), Zhang J T (张进涛). Regulation of copper surface via redox reaction for enhancing carbon dioixide electroreduction[J]. J. Electrochem.(电化学), 2019, 25(4): 497-503. |
[54] | Sartin M, Chen W(陈微), Chen Y X(陈艳霞), He F(贺凡). Recent progress in the mechanistic understanding of CO2 reduction on copper [J]. J. Electrochem.(电化学), 2020, 26(1): 41-53. |
[55] |
Christophe J, Doneux T, Buess-Herman C. Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys[J]. Electrocatalysis, 2012, 3(2): 139-146.
doi: 10.1007/s12678-012-0095-0 URL |
[56] |
Jia F L, Yu X X, Zhang L Z. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst[J]. J. Power Sources, 2014, 252: 85-89.
doi: 10.1016/j.jpowsour.2013.12.002 URL |
[57] |
Kim D, Resasco J, Yu Y, Asiri A M, Yang P D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nat. Commun., 2014, 5(1): 4948-4956.
doi: 10.1038/ncomms5948 URL |
[58] |
Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias F J, Solla-Gullón J, Koper M T M, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction[J]. J. Mater. Chem. A, 2015, 3(47): 23690-23698.
doi: 10.1039/C5TA06804E URL |
[59] |
Kim D, Xie C L, Becknell N, Yu Y, Karamad M, Chan K, Crumlin E J, Nörskov J K, Yang P D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(24): 8329-8336.
doi: 10.1021/jacs.7b03516 URL |
[60] |
Pander Iii J E, Ren D, Yeo B S. Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO2 reduction reaction[J]. Catal. Sci. Tech., 2017, 7(24): 5820-5832.
doi: 10.1039/C7CY01785E URL |
[61] |
Zhu W J, Zhang L, Yang P P, Hu C L, Dong H, Zhao Z J, Mu R T, Gong J L. Formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys[J]. ACS Energy Lett., 2018, 3(9): 2144-2149.
doi: 10.1021/acsenergylett.8b01286 URL |
[62] |
Gao J, Ren D, Guo X Y, Zakeeruddin S M, Grötzel M. Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts[J]. Faraday Discuss., 2019, 215: 282-296.
doi: 10.1039/C8FD00219C URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[9] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[10] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[11] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[12] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[13] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[14] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[15] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||