电化学(中英文) ›› 2021, Vol. 27 ›› Issue (3): 291-300. doi: 10.13208/j.electrochem.201257
陈佳琦, 叶旭旭, 廖玲文, 韦臻, 许绵乐, 陈艳霞*()
收稿日期:
2021-03-18
修回日期:
2021-04-17
发布日期:
2021-05-10
出版日期:
2021-06-28
通讯作者:
陈艳霞
E-mail:yachen@ustc.edu.cn
基金资助:
Jia-Qi Chen, Xu-Xu Ye, Ling-Wen Liao, Zhen Wei, Mian-Le Xu, Yan-Xia Chen*()
Received:
2021-03-18
Revised:
2021-04-17
Online:
2021-05-10
Published:
2021-06-28
Contact:
Yan-Xia Chen
E-mail:yachen@ustc.edu.cn
摘要:
对工作电极与参比电极之间的溶液电阻(Ru)进行准确的欧姆电压降补偿是获取可靠的电化学实验结果的前提,但测量中该如何进行补偿尚未建立规范的操作流程。本文首先探究了工作电极与Luggin毛细管末端距离对Ru的影响。随后对比了Autolab PGSTAT 302N、CHI系列恒电位仪的交流阻抗法与CHI系列恒电位仪所测得Ru的差别。并且以铂电极上的氢析出反应为例,探究了灵敏度、补偿百分比以及仪器等因素对补偿后HER极化曲线带来的影响。深入讨论了产生这些偏差的原因,最后给出了规避和减轻此类问题以实现准确有效的欧姆电压降补偿的建议。
陈佳琦, 叶旭旭, 廖玲文, 韦臻, 许绵乐, 陈艳霞. 电化学测量中的欧姆电压降补偿问题[J]. 电化学(中英文), 2021, 27(3): 291-300.
Jia-Qi Chen, Xu-Xu Ye, Ling-Wen Liao, Zhen Wei, Mian-Le Xu, Yan-Xia Chen. Ohmic Drop Compensation in Electrochemical Measurement[J]. Journal of Electrochemistry, 2021, 27(3): 291-300.
[1] | Chen Y X (陈艳霞), Huang J (黄俊), Zhan D P (詹东平). Encouraging more frogs in electrochemistry[J]. J. Electrochem.(电化学), 2020, 26(1): 1-2. |
[2] |
He F, Chen W, Chen J Q, Zhen E F, Cai J, Chen Y X. The effect of water on the quantification of volatile species by differential electrochemical mass spectrometry[J]. Anal. Chem., 2021, 93(13): 5547-5555.
doi: 10.1021/acs.analchem.1c00116 URL |
[3] |
Vliet D, Strmcnik D S, Chao W, Stamenkovic V R, Markovic N M, Koper M. On the importance of correcting for the uncompensated ohmic resistance in model experiments of the oxygen reduction reaction[J]. J. Electroanal. Chem., 2010, 647(1): 29-34.
doi: 10.1016/j.jelechem.2010.05.016 URL |
[4] |
Bauer H, Foo D. Second-harmonic alternating current polarography[J]. Aust. J. Chem., 1966, 19(7): 1103-1115.
doi: 10.1071/CH9661103 URL |
[5] |
Milner D F, Weaver M J. The influence of uncompensated solution resistance on the determination of standard electrochemical rate constants by cyclic voltammetry, and some comparisons with ac voltammetry[J]. Anal. Chim. Acta, 1987, 198: 245-257.
doi: 10.1016/S0003-2670(00)85025-4 URL |
[6] | Liao L W (廖玲文). Methodology and electrocatalysts for oxygen reduction reaction[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2013. |
[7] |
Britz D. iR elimination in electrochemical cells[J]. J. Electroanal. Chem. Interf. Electrochem., 1978, 88(3): 309-352.
doi: 10.1016/S0022-0728(78)80122-3 URL |
[8] | Oldham K. The effect of uncompensated resistance on the potential-step method of investigating electrochemical kinetics[J]. J. Electroanal. Chem., 1966, 11(3): 171-187. |
[9] |
Newman J. Current distribution on a rotating disk below the limiting current[J]. J. Electrochem. Soc., 1966, 113(12): 1235-1241.
doi: 10.1149/1.2423795 URL |
[10] | Piontelli R, Bianchi G, Bertocci U, Guerci C, Rivolta B. Meβmethoden der Polarisationsspannungen II[J]. Z. Elektrochem., 1954, 58(1): 54-64. |
[11] | Bockris J M, Azzam A. The kinetics of the hydrogen evolution reaction at high current densities[J]. Trans. Faraday Sot., 1952, 48: 145-160. |
[12] |
Montella C. Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ohmic potential drop[J]. J. Electroanal. Chem., 2002, 518(2): 61-83.
doi: 10.1016/S0022-0728(01)00691-X URL |
[13] |
Liu X, Cui S S, Qian M M, Sun Z J, Du P W. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions[J]. Chem. Commun., 2016, 52(32): 5546-5549.
doi: 10.1039/C6CC00526H URL |
[14] |
Chan S H, Chen X J, Khor K A. Reliability and accuracy of measured overpotential in a three-electrode fuel cell system[J]. J. Appl. Electrochem., 2001, 31(10): 1163-1170.
doi: 10.1023/A:1012232301349 URL |
[15] | Roullier L, Laviron E. Effect of uncompensated ohmic drop in surface linear potential sweep voltammetry: Application to the determination of surface rate constants[J]. J. Electroanal. Chem. Interf. Electrochem., 1983, 157(2): 193-203. |
[16] |
Mirĉeski V, Lovric M. Ohmic drop effects in square-wave voltammetry[J]. J. Electroanal. Chem., 2001, 497(1-2): 114-124.
doi: 10.1016/S0022-0728(00)00464-2 URL |
[17] |
Juárez A, Baruzzi A, Yudi L. Ohmic drop effects in square-wave voltammetry response for an ion transfer process at a liquid-liquid interface[J]. J. Electroanal. Chem., 2005, 577(2): 281-286.
doi: 10.1016/j.jelechem.2004.12.026 URL |
[18] |
Nicholson R S, Shain I. Correction. Theory of stationary electrode polarography[J]. Anal. Chem., 1964, 36(7): 1212-1212.
doi: 10.1021/ac60213a053 URL |
[19] | Haber F. Über die elektrische Reduktion von Nichtelektrolyten[J]. Z. Phys. Chem., 1900, 32(1): 193-270. |
[20] | Tang Y L (唐延丽). Electrochemical impedance spectroscopy study of hydrogen and oxygen-containing species adsorption on Ir(111) electrode[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2020. |
[21] | Scribner L L. The measurement and correction of electrolyte resistance in electrochemical tests[M]. Philadelphia: ASTM, 1990: 180-191. |
[22] | Metrohm Instruments. Ohmic Drop: Part 1 - Basic Principles[EB/OL]. [2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-003?fromProductFinder=true. |
[23] | Cooper K R, Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement[J]. J. Power Sour-ces, 2006, 160(2): 1088-1095. |
[24] | Oelβner W, Berthold F, Guth U. The iR drop-well-known but often underestimated in electrochemical polarization measurements and corrosion testing[J]. Mater. Corros., 2006, 57(6): 455-466. |
[25] |
Booman G, Holbrook W. Electroanalytical controlled-potential instrumentation[J]. Anal. Chem., 1963, 35(12): 1793-1809.
doi: 10.1021/ac60205a008 URL |
[26] | Gamry Instruments. Understanding ir compensation[EB/OL]. [2021-03-18]. https://cn.gamry.com/application-notes-3/instrumentation/understanding-ir-compensation/. |
[27] | Metrohm Instruments. Ohmic Drop: Part 2-Measurement [EB/OL]. [2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-004?fromProductFinder=true. |
[28] |
Yamagishi H. Automatic compensation of the IR drop in three-electrode systems by use of an electronic unit[J]. J. Electroanal. Chem., 1992, 326(1-2): 129-137.
doi: 10.1016/0022-0728(92)80508-2 URL |
[29] |
Yarnitzky C, Friedman Y. Dynamic compensation of the over all and uncompensated cell resistance in a two-or three-electrode system. Steady state techniques[J]. Anal. Chem., 1975, 47(6): 876-880.
doi: 10.1021/ac60356a050 URL |
[30] |
Guo Z Y, Lin X Q. Ultrafast cyclic voltammetry at scan rates of up to 3 MV s-1 through a single-opamp circuit with positive feedback compensation of ohmic drop[J]. J. Electroanal. Chem., 2004, 568: 45-53.
doi: 10.1016/j.jelechem.2004.01.005 URL |
[31] |
Britz D. 100% ir compensation by damped positive feedback[J]. Electrochim. Acta, 1980, 25(11): 1449-1452.
doi: 10.1016/0013-4686(80)87160-X URL |
[32] |
Chen G, Xie J J, Zhang Z H, Meng W Q, Zhang C F, Kang K, Wu Y B, Guo Z Y. A portable digital-control electrochemical system with automatic ohmic drop compensation for fast scan voltammetry and its application to ultrasensitive detection of chromium (III)[J]. Sens. Actuators B Chem., 2019, 301: 127135.
doi: 10.1016/j.snb.2019.127135 URL |
[33] | Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications[M]. New York: John Wiley & Sons, 2001: 632-657. |
[34] | Jia Z (贾铮), Dai C S (戴长松), Chen L (陈玲). Electrochemical measurement methods[M]. Beijing: Chemical Industry Press(化学工业出版社), 2006: 193-196. |
[35] |
Clavilier J, Faure R, Guinet G, Durand R. Preparation of monocrystalline Pt microelectrodes and electrtochemical study of the plane surfaces cut in the direction of the {111} and {110} planes[J]. J. Electroanal. Chem. Interf. Electrochem., 1980, 107(1): 205-209.
doi: 10.1016/S0022-0728(79)80022-4 URL |
[36] | Tang Y L (唐延丽), Chen W (陈微), Xu M L (许绵乐), Wei Z (韦臻), Cai J (蔡俊), Chen Y X (陈艳霞). Unravelling the hydrogen adsorption kinetics on Ir(111) electrode in acid solutions by impedance spectroscopy[J]. Chinese J. Chem. Phys.(化学物理学报), 2020, 33(4). |
[37] |
He P, Faulkner L R. Intelligent, automatic compensation of solution resistance[J]. Anal. Chem., 1986, 58(3): 517-523.
doi: 10.1021/ac00294a004 URL |
[38] | Piontelli R, Bianchi G, Aletti R. Messungsmethoden der Polarisationsspannungen mittels Modellversuchen[J]. Z. Elektrochem, 1952, 56(2): 86-93. |
[39] | Piontelli R, Bertocci U, Bianchi G, Guerci C, Poli G. Meβmethoden der Polarisationsspannungen. III[J]. Z. Ele-ktrochem, 1954, 58(2): 86-95. |
[40] | Piontelli R, Rivolta B, Montanelli G. Meβmethoden der Polarisationsspannungen. IV[J]. Z. Elektrochem, 1955, 59(1): 64-67. |
[41] |
Barnartt S. Primary current distribution around capillary tips used in the measurement of electrolytic polarization[J]. J. Electrochem. Soc., 1952, 99(12): 549.
doi: 10.1149/1.2779650 URL |
[42] |
Barnartt S. Magnitude of IR-drop corrections in electrode polarization measurements made with a Luggin-Haber capillary[J]. J. Electrochem. Soc., 1961, 108(1): 102.
doi: 10.1149/1.2427994 URL |
[43] |
Hayes M, Kuhn A, Patefield W. Techniques for the determination of ohmic drop in half-cells and full cells: A review[J]. J. Power Sources, 1977, 2(2): 121-136.
doi: 10.1016/0378-7753(77)80013-X URL |
[44] | Müller E, Soller M. Die Rolle des Bleisuperoxyds als Anode bei der elektrolytischen Oxydation des Chromsulfates zu Chromsäure[J]. Z. Elektrochem, 1905, 11(48): 863-872. |
[45] |
Milligan A. A method for measuring the potential of a current-carrying electrode[J]. Br. J. Appl. Phys., 1952, 3(12): 372.
doi: 10.1088/0508-3443/3/12/302 URL |
[46] | Pletcher D, Greff R, Peat R, Peter L, Robinson J. Insturmental methods in electrochemistry[M]. New York: Ellis Horwood Ltd, 2001: 368-370. |
[47] |
Newman J. Ohmic potential measured by interrupter techniques[J]. J. Electrochem. Soc., 1970, 117(4): 507-508.
doi: 10.1149/1.2407553 URL |
[48] |
Arjmand F, Zhang L F. Solution resistivity, ohmic drop and oxygen reduction rate at high temperature pressurized water[J]. Electrochim. Acta, 2016, 216: 438-448.
doi: 10.1016/j.electacta.2016.08.136 URL |
[1] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[2] | 谭惠忠, 钱国庆, 王文宝, 孙岚, 林昌健, . 铝电解电容器用铝箔的研究[J]. 电化学(中英文), 2010, 16(4): 441-445. |
[3] | 卓向东, 林昌健, . 基于USB接口的有机涂层耐蚀性能快速测试仪[J]. 电化学(中英文), 2008, 14(2): 223-226. |
[4] | 原鲜霞, 徐乃欣. 电化学阻抗法测定金属氢化物电极中氢的扩散系数[J]. 电化学(中英文), 2001, 7(3): 321-325. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||