欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 73-83.  doi: 10.13208/j.electrochem.181011

• 综述 • 上一篇    下一篇

锂离子电池镍钴锰/铝三元浓度梯度正极材料的研究进展

张春芳1, 赵文高1, 郑时尧2, 李益孝2, 龚正良1, 张忠如2, 杨勇1,2,*()   

  1. 1. 厦门大学能源学院, 福建 厦门 361005
    2. 固体表面物理化学国家重点实验室,能源材料化学协同创新中心, 厦门大学化学化工学院, 福建 厦门 361005
  • 收稿日期:2018-10-11 修回日期:2019-01-04 出版日期:2020-02-28 发布日期:2019-01-15
  • 通讯作者: 杨勇 E-mail:yyang@xmu.edu.cn
  • 基金资助:
    福建省高校产学研重点资助项目(2018H6020);福建省科技重大专项/专题(2014HZ0002-1)

Research Progresses in Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials for Li-Ion Batteries

Chun-fang ZHANG1, Wen-gao ZHAO1, Shi-yao ZHENG2, Yi-xiao LI2, Zheng-liang GONG1, Zhong-ru ZHANG2, Yong YANG1,2,*()   

  1. 1. College of Energy, Xiamen University, Xiamen 361102, Fujian, China
    2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Energy Materials Chemistry Collaborative Innovation Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2018-10-11 Revised:2019-01-04 Published:2020-02-28 Online:2019-01-15
  • Contact: Yong YANG E-mail:yyang@xmu.edu.cn

摘要:

高镍三元正极材料由于高容量和高工作电压被认为是下一代锂离子电池有力的候选者,然而循环稳定性和热稳定性不佳限制了其广泛应用. 镍钴锰/铝三元浓度梯度正极材料的梯度设计可以在保证高容量的同时兼具优良的循环稳定性,因而在过去十年中得到了广泛研究. 本文综述了锂离子电池镍钴锰/铝三元浓度梯度材料最新的研究进展,论文首先总结了梯度材料的不同合成方法,并阐述了核壳浓度梯度材料和全浓度梯度材料的研究方向. 其次,介绍了浓度梯度材料的结构表征手段并揭示性能改善的原因. 最后讨论了目前该材料产业化的难点,并提出了可能的解决方案.

关键词: 锂离子电池, 三元浓度梯度材料, 核壳浓度梯度, 全浓度梯度

Abstract:

Nickel-rich ternary materials with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next generation lithium-ion batteries (LIBs). However, the inferior cycle stability and thermal stability have limited their widely commercial applications. Concentration gradient design of Ni-Co-Mn/Al ternary concentration gradient materials have been extensively studied in the past decade, which can ensure high cycle capacity while maintaining excellent cycle stability. In this paper, the latest research progresses in Ni-Co-Mn/Al ternary concentration gradient materials for LIBs are reviewed. Firstly, we summarize the different synthesis methods of ternary concentration-gradient materials, especially focusing on the research directions towards core-shell concentration gradient (CSCG) materials and full concentration gradient (FCG) ternary materials. In addition, this review also introduces the structural characterizations for concentration gradient ternary materials and reveals the reasons for their performance improvements. Finally, we discuss the current challenges of CSCG and FCG materials in the industrialization and display possible solutions to address them.

Key words: lithium-ion batteries, ternary concentration gradient material, core-shell concentration gradient, full concentration gradient

中图分类号: