电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 73-83. doi: 10.13208/j.electrochem.181011
张春芳1, 赵文高1, 郑时尧2, 李益孝2, 龚正良1, 张忠如2, 杨勇1,2,*()
收稿日期:
2018-10-11
修回日期:
2019-01-04
出版日期:
2020-02-28
发布日期:
2019-01-15
通讯作者:
杨勇
E-mail:yyang@xmu.edu.cn
基金资助:
Chun-fang ZHANG1, Wen-gao ZHAO1, Shi-yao ZHENG2, Yi-xiao LI2, Zheng-liang GONG1, Zhong-ru ZHANG2, Yong YANG1,2,*()
Received:
2018-10-11
Revised:
2019-01-04
Published:
2020-02-28
Online:
2019-01-15
Contact:
Yong YANG
E-mail:yyang@xmu.edu.cn
摘要:
高镍三元正极材料由于高容量和高工作电压被认为是下一代锂离子电池有力的候选者,然而循环稳定性和热稳定性不佳限制了其广泛应用. 镍钴锰/铝三元浓度梯度正极材料的梯度设计可以在保证高容量的同时兼具优良的循环稳定性,因而在过去十年中得到了广泛研究. 本文综述了锂离子电池镍钴锰/铝三元浓度梯度材料最新的研究进展,论文首先总结了梯度材料的不同合成方法,并阐述了核壳浓度梯度材料和全浓度梯度材料的研究方向. 其次,介绍了浓度梯度材料的结构表征手段并揭示性能改善的原因. 最后讨论了目前该材料产业化的难点,并提出了可能的解决方案.
中图分类号:
张春芳, 赵文高, 郑时尧, 李益孝, 龚正良, 张忠如, 杨勇. 锂离子电池镍钴锰/铝三元浓度梯度正极材料的研究进展[J]. 电化学(中英文), 2020, 26(1): 73-83.
Chun-fang ZHANG, Wen-gao ZHAO, Shi-yao ZHENG, Yi-xiao LI, Zheng-liang GONG, Zhong-ru ZHANG, Yong YANG. Research Progresses in Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials for Li-Ion Batteries[J]. Journal of Electrochemistry, 2020, 26(1): 73-83.
表1
不同梯度设计的核壳梯度材料
Gradient design of the shell (inside to outside) | Average composition | |||
---|---|---|---|---|
Reduce | Increase | Constant | ||
Ni | Mn | Co | LiNi0.5Co0.2Mn0.3O2[ Li[Ni0.75Co0.10Mn0.15]O2[ | |
Ni | Mn&Co | / | LiNi0.60Co0.15Mn0.25O2[ LiNi0.83Co0.07Mn0.10O2[ LiNi0.95Co0.025Mn0.025O2[ | |
Ni&Co | Mn | / | LiNi0.72Co0.18Mn0.10O2[ | |
Co | Ni&Mn | / | LiNixCo1-2xMnxO2 (x = 0.333, 0.4, 0.416, 0.45)[ | |
Ni | Co | Al | Li[Ni0.865Co0.121Al0.014]O2[ |
表2
不同镍含量的全梯度材料性能的比较
Average composition | First discharge specific capacity/ (mAh·g-1) | Capacity retention rate |
---|---|---|
FCG60[ | 175(0.05 C) | 97% (3~4.3 V,0.05 C,50 cycles) |
FCG65[ | 194.2(0.1 C) | 95.8% (2.7~4.3 V,0.5 C,100 cycles) |
FCG70[ | 200(0.1 C) | 94% (2.7~4.3 V,0.5 C,100 cycles) 88% (Full cell,3~4.2 V,1 C,1500 cycles) |
FCG75[ | 215(0.2 C) | 90% (Full cell,3~4.2 V,1C,1000 cycles) |
FCG61[ | 188(0.1 C) | 65.1% (Full cell,3~4.2 V,1C,3000 cycles) |
Al~FCG61[ | 188(0.1 C) | 85.4% (Full cell,3~4.2 V,1C,3000 cycles) |
TSFCG65[ | 206.8(0.1 C) | 94.5% (2.7~4.3 V,0.5 C,100 cycles) |
TSFCG75[ | 222.2(0.1 C) | 93.5% (2.7~4.3 V,0.5 C,100 cycles) |
TSFCG85[ | 221(0.1 C) | 92% (2.7~4.3 V,0.5 C,100 cycles) |
[1] |
Goodenough J B, Park K S . The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013,135(4):1167-1176.
doi: 10.1021/ja3091438 URL pmid: 23294028 |
[2] | Liu H S( 刘汉三), Yang Y( 杨勇), Zhang Z R( 张忠如 ), et al. New progress in studies of lithium nickel oxide as positive electrode materials of lithium ion batteris[J]. Journal of Electrochemistry( 电化学), 2001,7(2):145-154. |
[3] |
Reimers J N, Dahn J R . Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992,139(8):2091-2097.
doi: 10.1039/b901200a URL pmid: 19370225 |
[4] |
Chung K Y, Kim K B . Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes[J]. Electrochimica Acta, 2004, 49(20): 3327-3337.[4]
doi: 10.1016/j.electacta.2004.01.071 URL |
[5] | Feng Z S, Wang Y, Yang B C , et al. Research status of LiFePO4 cathode material for lithium-ion battery[J]. Journal of Functional Materials, 2011,42(4):581-584. |
[6] | Noh H J, Youn S, Chong S Y , et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2, ( x =1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013,233:121-130. |
[7] | Zhao W G, Zheng J M, Zou L F , et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 2018,8(19):1800297. |
[8] | Zou L F, Zhao W G, Liu Z Y , et al. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials[J]. ACS Energy Letters, 2018,3(10):2433-2440. |
[9] | Li X, Zhang K, Wang M S , et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustainable Energy & Fuels, 2017,2(2):413-421. |
[10] | Yano A, Aoyama S, Shikano M , et al. Surface structure and high-voltage charge/discharge characteristics of Aloxide coated LiNi1/3Co1/3Mn1/3O2 cathodes[J]. Journal of The Electrochemical Society, 2015,162(2):A3137-A3144. |
[11] |
Yano A, Ueda A, Shikano M , et al. Surface structure and high-voltage charging/discharging performance of low-content Zr-oxide-coated LiNi1/3Co1/3Mn1/3O2[J]. Journal of The Electrochemical Society, 2016,163(2):A75-A82.
doi: 10.1149/2.0211602jes URL |
[12] | Xiong X H, Wang Z X, Yin X , et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013,110(11):4-9. |
[13] | Chen Y P, Zhang Y, Chen B J , et al. An approach to application for LiNi0.6Co0.2Mn0.2O2, cathode material at high cutoff voltage by TiO2, coating[J]. Journal of Power Sources, 2014,256(12):20-27. |
[14] |
Chen Z H, Qin Y, Amine K , et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010,20(36):7606-7612.
doi: 10.1039/c6sm01441k URL pmid: 27539982 |
[15] | Sun Y K, Kim D H, Chong S Y , et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials, 2010,20(3):485-491. |
[16] | Li J W( 李佳玮), Li Y( 厉英), Kong Y Z( 孔亚州 ). Recent progress in core-shell ternary cathode material for lithium-ion battery[J]. Materials Review: Nano and New Materials Album (材料导报: 纳米与新材料专辑), 2016(S1):187-190. |
[17] |
Sun Y K, Myung S T, Kim M H , et al. Synjournal and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries[J]. Journal of the American Chemical Society, 2005,127(38):13411-13418.
doi: 10.1021/ja053675g URL pmid: 16173775 |
[18] | Cho S W, Kim G O, Ju J H , et al. X-ray absorption spectroscopy studies of the Ni ion of Li(Ni0.8Co0.15Al0.05)0.8-(Ni0.5Mn0.5)0.2O2, with a core-shell structure and LiNi0.8-Co0.15Al0.05O2, as cathode materials[J]. Materials Research Bulletin, 2012,47(10):2830-2833. |
[19] |
Sun Y K, Myung S T, Park B C , et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009,8(4):320-324.
doi: 10.1038/nmat2418 URL pmid: 19305398 |
[20] |
Sun Y K, Chen Z, Noh H J , et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012,11(11):942-947.
doi: 10.1038/nmat3435 URL pmid: 23042415 |
[21] | Song S L( 宋顺林), Zhang P L( 张朋立), Zheng C C( 郑长春 ), et al. Research progress on structural design of ternary cathode material[J]. Guangdong Chemical Industry( 广东化工), 2017,44(18):114-116. |
[22] | Michalska M, Lipinska L, Mirkowska M , et al. Nanocrystalline lithium manganese oxide spinels for Li-ion batteries-sol-gel synjournal and characterization of their structure and selected physical properties[J]. Solid State Ionics, 2011,188(1):160-164. |
[23] | Hou X H, Wang J Y, Zhang M , et al. Facile spray-drying/pyrolysis synjournal of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries[J]. RSC Advances , 2014,4(65):34615-34622. |
[24] |
Bommel A, Dahn J R . Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009,21(8):1500-1503.
doi: 10.1021/cm803144d URL |
[25] |
Sun Y K, Lee B R, Noh H J , et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2011,21(27):10108-10112.
doi: 10.1039/c0jm04242k URL |
[26] |
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373 URL pmid: 26017733 |
[27] | Voorhees P W . The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985,38(1/2):231-252. |
[28] |
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373 URL pmid: 26017733 |
[29] | Sun Y K, Kim D H, Jung H G , et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010,55(28):8621-8627. |
[30] | Yoon C S, Kim S J, Kim U H , et al. Microstructure evolution of concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2018,28(28):1802090. |
[31] |
Yoon S J, Myung S T, Noh H J , et al. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries[J]. ChemSusChem, 2014,7(12):3295-3303.
doi: 10.1002/cssc.201402389 URL pmid: 25044175 |
[32] | Chen X L, Jia X B, Qu Y Y , et al. High-voltage performance of concentration-gradient Li[Ni0.6Co0.2Mn0.2]O2 layered oxide cathode materials for lithium batteries[J]. New Journal of Chemistry, 2018,42(8):5868-5874. |
[33] | Cheng X L, Li D, Mo Y , et al. Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018,261:513-520. |
[34] | Du K, Hua C S, Tan C P , et al. A high powered concentration-gradient Li(Ni0.85Co0.12Mn0.03)O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2014,263:203-208. |
[35] | Jun D W, Chong S Y, Kim U H , et al. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017,29(12):5048-5052. |
[36] | Sun Y K, Kim D H, Chong S Y , et al. A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries[J]. Advanced Functional Materials, 2010,20(3):485-491. |
[37] | Huang Z L, Gao J, He X M , et al. Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors[J]. Journal of Power Sources, 2012,202:284-290. |
[38] | Park K J, Choi M J, Maglia F , et al. High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries[J]. Advanced Energy Materials, 2018,8(19):1703612. |
[39] | Chen W H, Li Y Y, Zhao J J , et al. Controlled synjournal of concentration gradient LiNi0.84Co0.10Mn0.04Al0.02O1.90F0.1 with improved electrochemical properties in Li-ion batteries[J]. RSC Advances, 2016,6(63):58173-58181. |
[40] |
Shi J L, Qi R, Zhang X D , et al. A high thermal and air stability cathode material with concentration-gradient buffer for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017,9(49):42829-42835.
doi: 10.1021/acsami.7b14684 URL pmid: 29148695 |
[41] |
Zhang J C, Yang Z Z, Gao R , et al. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Applied Materials & Interfaces, 2017,9(35):29794-29803.
doi: 10.1021/acsami.7b08802 URL pmid: 28799736 |
[42] |
Noh H J, Ju J W, Sun Y K , et al. Comparison of nanorod structured Li[Ni0.54Co0.16Mn0.30]O2 with conventional cathode materials for Li-ion batteries[J]. ChemSusChem. 2014,7(1):245-252.
doi: 10.1002/cssc.201300379 URL pmid: 24127348 |
[43] | Noh H J, Chen Z, Yoon C S , et al. Cathode material with nanorod structure-an application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials, 2013,25(10):2109-2115. |
[44] | Sun Z, Wang D, Fan Y , et al. Improved performances of LiNi0.6Co0.15Mn0.25O2 cathode material with full concentration-gradient for lithium ion batteries[J]. RSC Advances, 2016,6(105):103747-103753. |
[45] |
Song D W, Hou P Y, Wang X Q , et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces, 2015,7(23):12864-12872.
doi: 10.1021/acsami.5b02373 URL pmid: 26017733 |
[46] | LI Y, XU R, REN Y , et al. Synjournal of full concentration gradient cathode studied by high energy X ray diffraction[J]. Nano Energy, 2016,19:522-531. |
[47] | Hou P Y, Zhang L Q, Gao X P . A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(40):17130-17138. |
[48] | Erickson E M, Bouzaglo H, Sclar H , et al. Synjournal and electrochemical performance of nickel-rich layered-structure LiNi0.65Co0.08Mn0.27O2 cathode materials comprising particles with Ni and Mn full concentration gradients[J]. Journal of The Electrochemical Society, 2016,163(7):A1348-A1358. |
[49] |
Liang L W, Hu G R, Cao Y B , et al. Synjournal and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2-O2 cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015,635:92-100.
doi: 10.1021/nl5022859 URL pmid: 24960550 |
[50] | Chae C, Noh H J, Lee J K , et al. A High-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode[J]. Advanced Functional Materials, 2014,24(20):3036-3042. |
[51] | Hua C S, Du K, Tan C P , et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys And Compounds, 2014,614:264-270. |
[52] | Ju J W, Lee E J, Yoon C S , et al. Optimization of layered cathode material with full concentration gradient for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2014,118(1):175-182. |
[53] | Kim U, Lee E, Yoon C S , et al. Lithium-ion batteries: compositionally graded cathode material with long-term cycling stability for electric vehicles application[J]. Advanced Energy Materials, 2016,6(5):1601417. |
[54] | Kim U H, Myung S T, Sun Y K , et al. Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries[J]. ACS Energy Letters, 2017,2(8):1848-1854. |
[55] | Lim B, Yoon S, Park K , et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015,25(29):4673-4680. |
[56] | Chong S Y, Park K J, Kim U H , et al. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J]. Chemistry of Materials, 2017,29(24):10436-10445. |
[57] | Park K J, Lim B B, Choi M H , et al. A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(44):22183-22190. |
[58] | Lee J H, Yoon C S, Hwang J Y , et al. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode[J]. Energy & Environmental Science, 2016,9(6):2152-2158. |
[59] | Park K J, Lim B B, Choi M H , et al. A high-capacity Li-[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(44):22183-22190. |
[60] | Lee E J, Noh H J, Yoon C S , et al. Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2015,273:663-669. |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[4] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[5] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[6] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[7] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[8] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[9] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[10] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[11] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[12] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[13] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[14] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
[15] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||