电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 61-72. doi: 10.13208/j.electrochem.181244
收稿日期:
2019-02-19
修回日期:
2019-04-09
出版日期:
2020-02-28
发布日期:
2019-04-09
通讯作者:
田娜
E-mail:tnsd@xmu.edu.cn
基金资助:
XIAO Chi, TIAN Na*(), ZHOU Zhi-you, SUN Shi-gang
Received:
2019-02-19
Revised:
2019-04-09
Published:
2020-02-28
Online:
2019-04-09
Contact:
TIAN Na
E-mail:tnsd@xmu.edu.cn
摘要:
催化剂的性能与其表面结构及组成密切相关,高指数晶面纳米晶的表面含有高密度的台阶原子等活性位点而表现出较高的催化活性. 本文综述了电化学方波电位方法用于Pt、Pd、Rh等贵金属高指数晶面结构纳米晶催化剂的制备、形成机理及其电催化性能的研究. 针对贵金属利用率问题,还着重介绍了具有较高质量活性的小粒径Pt二十四面体的制备. 在此基础上,还介绍了电化学方波电位方法用于低共熔溶剂中制备高指数晶面纳米晶,以及高指数晶面纳米催化剂的表面修饰及应用;最后对高指数晶面纳米催化剂的发展做出了展望.
中图分类号:
肖翅, 田娜, 周志有, 孙世刚. 高指数晶面纳米催化剂的电化学制备及应用[J]. 电化学(中英文), 2020, 26(1): 61-72.
XIAO Chi, TIAN Na, ZHOU Zhi-you, SUN Shi-gang. Electrochemical Preparations and Applications of Nano-Catalysts with High-Index Facets[J]. Journal of Electrochemistry, 2020, 26(1): 61-72.
[1] |
Zhou Z Y, Tian N, Li J T , et al. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage[J]. Chemical Society Review, 2011,40(7):4167-4185.
doi: 10.1039/c0cs00176g URL pmid: 21552612 |
[2] |
Tian N, Xiao J, Zhou Z Y , et al. Pt-group bimetallic nano-crystals with high-index facets as high performance electrocatalysts[J]. Faraday Discussions, 2013,162:77-89.
doi: 10.1039/c3fd20146e URL pmid: 24015577 |
[3] | Benck J D, Hellstern T R, Kibsgaard J , et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2014,4(11):3957-3971. |
[4] | Tian N, Lu B A, Yang X D , et al. Rational design and synjournal of low-temperature fuel cell electrocatalysts[J]. Electrochemical Energy Reviews, 2018,1(1):54-83. |
[5] |
Tian N, Zhou Z Y, Sun S G , et al. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007,316(5825):732-735.
doi: 10.1126/science.1140484 URL pmid: 17478717 |
[6] | Tian N, Zhou Z Y, Sun S G . Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles[J]. The Journal of Physical Chemistry C, 2008,112(50):19801-19817. |
[7] |
Wang G W, Huang B, Xiao L , et al. Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells[J]. Journal of the American chemical Society, 2014,136(27):9643-9649.
doi: 10.1021/ja503315s URL pmid: 24936859 |
[8] | Green C L, Kucernak A . Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts[J]. The Journal of Physical Chemistry B, 2002,106(5):1036-1047. |
[9] |
Liu P X, Zhao Y, Qin R X , et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016,352(6287):797-800.
doi: 10.1126/science.aaf5251 URL pmid: 27174982 |
[10] | Sun S G, Chen A C . Effects of ethylene glycol (EG) concentration and pH of solutions on electrocatalytic properties of Pt(111) electrode in EG oxidation-a comparison study with adjacent planes of platinum single crystal situated in [110] and [011] crystallographic zones[J]. Electrochimica Acta, 1994,39(7):969-973. |
[11] | Sun S G, Zhou Z Y . Surface processes and kinetics of CO2 reduction on Pt (100) electrodes of different surface structure in sulfuric acid solutions[J]. Physical Chemistry Chemical Physics, 2001,3(16):3277-3283. |
[12] |
Ahmadi T S, Wang Z L, Green T C , et al. Shape-controlled synjournal of colloidal platinum nanoparticles[J]. Science, 1996,272(5270):1924-1925.
doi: 10.1126/science.272.5270.1924 URL pmid: 8662492 |
[13] | Buckley H E . Crystal growth[J]. John Wiley & Sons, New York, 1951. |
[14] |
Quan Z W, Wang Y X, Fang J Y . High-Index faceted noble metal nanocrystals[J]. Accounts of Chemical Research. 2013,46(2):191-202.
doi: 10.1021/ar200293n URL pmid: 22587943 |
[15] | Chen Q L( 陈巧丽), Li H Q( 李慧齐), Jang Y Q( 蒋亚琪 ), et al. Constructions of noble metal nanocrystals with specific crystal facets and high surface area[J]. Journal of Electrochemistry( 电化学), 2018,24(6):602-614. |
[16] |
Niu W X, Duan Y K, Qing Z K , et al. Shaping gold nano-crystals in dimethyl sulfoxide: Toward trapezohedral and bipyramidal nanocrystals enclosed by {311} facets[J]. Journal of the American Chemical Society, 2017,139(16):5817-5826.
doi: 10.1021/jacs.7b00036 URL pmid: 28383888 |
[17] |
Yang C W, Chanda K, Lin P H , et al. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity[J]. Journal of the American Chemical Society, 2011,133(49):19993-20000.
doi: 10.1021/ja209121x URL pmid: 22091631 |
[18] |
Langille M R, Personick M L, Zhang J , et al. Defining rules for the shape evolution of gold nanoparticles[J]. Journal of the American Chemical Society, 2012,134(35):14542-14554.
doi: 10.1021/ja305245g URL pmid: 22920241 |
[19] |
Personick M L, Langille M R, Zhang J , et al. Shape control of gold nanoparticles by silver underpotential deposition[J]. Nano Letters, 2011,11(8):3394-3398.
doi: 10.1021/nl201796s URL pmid: 21721550 |
[20] |
Niu W X, Zhang L, Xu G B . Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control[J]. Nanoscale, 2013,5(8):3172-3181.
doi: 10.1039/c3nr00219e URL pmid: 23467455 |
[21] |
Lin H X, Lei Z C, Jiang Z Y , et al. Supersaturation-dependent surface structure evolution: From ionic, molecular to metallic micro/nanocrystals[J]. Journal of the American Chemical Society, 2013,135(25):9311-9314.
doi: 10.1021/ja404371k URL pmid: 23745607 |
[22] |
Zhang J W, Li H Q, Kuang Q , et al. Toward rationally designing surface structures of micro- and nanocrystallites: Role of supersaturation[J]. Accounts of Chemical Research. 2018,51(11):2880-2887
doi: 10.1021/acs.accounts.8b00344 URL pmid: 30346701 |
[23] |
Zhou Z Y, Huang Z Z, Chen D J , et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation[J]. Angewandte Chemie International Edition, 2010,49(2):411-414.
doi: 10.1002/anie.200905413 URL pmid: 19967691 |
[24] | Kimizuka N, Abe T, Itaya K . Slow surface-diffusion of Pt atoms on Pt (III)[J]. Denki Kagaku, 1993,61(7):796-799. |
[25] | Zei M S, Batina N, Kolb D M . On the stability of recons-tructed Pt(100) in an electrochemical cell: An ex-situ LEED/RHEED and in-situ STM study[J]. Surface Science, 1994,306(1/2):L519-L528. |
[26] | Furuya N, Ichinose M, Shibata M . Structural changes at the Pt(100) surface with a great number of potential cycles[J]. Journal of Electroanalytical Chemistry, 1999,460(1/2):251-253. |
[27] | Furuya N, Shibata M . Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions[J]. Journal of Electroanalytical Chemistry, 1999,467(1/2):85-91. |
[28] |
Ruge M, Drnec J, Rahn B , et al. Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction[J]. Journal of the American Chemical Society, 2017,139(12):4532-4539.
doi: 10.1021/jacs.7b01039 URL pmid: 28252295 |
[29] |
Zhu T, Hensen E J M, van Santen R A, , et al. Roughening of Pt nanoparticles induced by surface-oxide formation[J]. Physical Chemistry Chemical Physics, 2013,15(7):2268-2272.
doi: 10.1039/c2cp44252c URL pmid: 23303314 |
[30] |
McCrum I T, Hickner M A, Janik M J . First-principles calculation of Pt surface energies in an electrochemical environment: thermodynamic driving forces for surface faceting and nanoparticle reconstruction[J]. Langmuir, 2017,33(28):7043-7052.
doi: 10.1021/acs.langmuir.7b01530 URL pmid: 28640641 |
[31] |
Tian N, Zhou Z Y, Yu N F , et al. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation[J]. Journal of the American Chemical Society, 2010,132(22):7580-7581.
doi: 10.1021/ja102177r URL pmid: 20469858 |
[32] |
Yu N F, Tian N, Zhou Z Y , et al. Electrochemical synjournal of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity[J]. Angewandte Chemie International Edition, 2014,53(20):5097-5101.
doi: 10.1002/anie.201310597 URL pmid: 24692362 |
[33] | Yu N F, Tian N, Zhou Z Y , et al. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalysts[J]. ACS Catalysis, 2019,9(4):3144-3152. |
[34] |
Sheng T, Tian N, Zhou Z Y , et al. Designing Pt-based electrocatalysts with high surface energy[J]. ACS Energy Letters, 2017,2(8):1892-1900.
doi: 10.1021/acsenergylett.7b00385 URL |
[35] |
Sheng T, Xu Y F, Jiang Y X , et al. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage[J]. Accounts of Chemical Research, 2016,49(11):2569-2577.
doi: 10.1021/acs.accounts.6b00485 URL pmid: 27739662 |
[36] | Deng Y J, Tian N, Zhou Z Y , et al. Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure[J]. Chemical Science, 2012,3(4):1157-1161. |
[37] |
Lu B A, Du J H, Sheng T , et al. Hydrogen adsorption-mediated synjournal of concave Pt nanocubes and their enhanced electrocatalytic activity[J]. Nanoscale, 2016,8(22):11559-11564.
doi: 10.1039/c6nr02349e URL pmid: 27211517 |
[38] | Zhou Z Y, Shang S J, Tian N , et al. Shape transformation from Pt nanocubes to tetrahexahedra with size near 10 nm[J]. Electrochemistry Communications, 2012,22:61-64. |
[39] |
Liu S, Tian N, Xie A Y , et al. Electrochemically seed-mediated synjournal of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance[J]. Journal of the American Chemical Society, 2016,138(18):5753-5756.
doi: 10.1021/jacs.5b13473 URL pmid: 27063648 |
[40] | Huang L( 黄龙), Zhan M( 詹梅), Wang Y C( 王宇成 ), et al. Syntheses of carbon paper supported high-index faceted Pt nanoparticles and their performance in direct formic acid fuel cells[J]. Journal of Electrochemistry( 电化学), 2016,22(2):123-128. |
[41] |
Li Y Y, Jiang Y X, Chen M H , et al. Electrochemically shape-controlled synjournal of trapezohedral platinum nanocrystals with high electrocatalytic activity[J]. Chemical Communications, 2012,48(76):9531-9533.
doi: 10.1039/c2cc34322c URL pmid: 22898799 |
[42] |
Xiao J, Liu S, Tian N , et al. Synjournal of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution[J]. Journal of the American Chemical Society, 2013,135(50):18754-18757.
doi: 10.1021/ja410583b URL pmid: 24299234 |
[43] |
Zhou Z Y, Tian N, Huang Z Z , et al. Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method[J]. Faraday Discussions, 2018,140(1):81-92.
doi: 10.1039/b803716g URL pmid: 19213312 |
[44] |
Wei L, Zhou Z Y, Chen S P , et al. Electrochemically shape-controlled synjournal in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity[J]. Chemical Communications, 2013,49(95):11152-11154.
doi: 10.1039/c3cc46473c URL pmid: 24084858 |
[45] |
Du J H, Sheng T, Xiao C , et al. Shape transformation of {hk0}-faceted Pt nanocrystals from tetrahexahedron to truncated ditetragonal prism[J]. Chemical Communications, 2017,53(22):3236-3238.
doi: 10.1039/c7cc00432j URL pmid: 28256665 |
[46] |
Wagle D V, Zhao H, Baker G A . Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Accounts of Chemical Research, 2015,45(41):2299-2308.
doi: 10.1021/ar5000488 URL pmid: 24892971 |
[47] |
Kareem M A, Mjalli F S, Hashim M A , et al. Phosphonium-based ionic liquids analogues and their physical properties[J]. Journal of Chemical & Engineering Data, 2010,55(11):4632-4637.
doi: 10.1039/c8cp03004a URL pmid: 29989116 |
[48] |
Zhang Q, De O V K, Royer S, , et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews, 2012,41(21):7108-7146.
doi: 10.1039/c2cs35178a URL pmid: 22806597 |
[49] | Wei L, Fan Y J, Tian N , et al. Electrochemically shape-controlled synjournal in deep eutectic solvents-a new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity[J]. The Journal of Physical Chemistry C, 2011,116(2):2040-2044. |
[50] | Wei L, Xu C D, Huang L , et al. Electrochemically shape-controlled synjournal of Pd concave-disdyakis triacontahedra in deep eutectic solvent[J]. Journal of Physical Chemistry C, 2015,120(29):150527130842000. |
[51] |
Wei L, Sheng T, Ye J Y , et al. Seeds and potentials mediated synjournal of high-index faceted gold nanocrystals with enhanced electrocatalytic activities[J]. Langmuir, 2017,33(28):6991-6998.
doi: 10.1021/acs.langmuir.7b00964 URL pmid: 28657756 |
[52] |
Chen Q S, Zhou Z Y, Vidal-Iglesias F J , et al. Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration[J]. Journal of the American Chemical Society, 2011,133(33):12930-12933.
doi: 10.1021/ja2042029 URL pmid: 21793583 |
[53] | Nøskov J K, Rossmeisl J, Logadottir A , et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004,108(46):17886-17892. |
[54] |
Zhang S, Shao Y Y, Yin G P , et al. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation[J]. Angewandte Chemie, 2010,122(12):2257-2260.
doi: 10.1002/1521-3773(20010618)40:12<2257::AID-ANIE2257>3.0.CO;2-S URL pmid: 29711834 |
[55] | Liu H X, Tian N, Brandon M P , et al. Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation[J]. ACS Catalysis, 2012,2(2):708-715. |
[56] |
Liu H X, Tian N , et al. Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration[J]. Physical Chemistry Chemical Physics, 2012,14(47):16415-16423.
doi: 10.1039/c2cp42930f URL pmid: 23131726 |
[57] |
Zhang F Y, Sheng T, Tian N , et al. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols[J]. Chemical Communications, 2017,53(57):8085-8088.
doi: 10.1039/c7cc04140c URL pmid: 28677715 |
[1] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[2] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[3] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[4] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[5] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[6] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[7] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[8] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[9] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[10] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[11] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[12] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[13] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[14] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[15] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||