[1] Schlucker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angewandte Chemie International Edition, 2014, 53(19): 4756-4795.
[2] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.
[3] Dieringer J A, Lettan R B, Scheidt K A, et al. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2007, 129(51): 16249-16256.
[4] Emory S R, Jensen R A, Wenda T, et al. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS[J]. Faraday discussions, 2006, 132: 249-132.
[5] Bosnick K A, Jiang J, Brus L E. Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates[J]. The Journal of Physical Chemistry B, 2002, 106(33): 8096-8099.
[6] Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method[J]. The Journal of Physical Chemistry B, 2003, 107(31): 7607-7617.
[7] Vosgröne T, Meixner A. Surface- and resonance-enhanced micro-raman spectroscopy of xanthene dyes: From the ensemble to single molecules[J]. ChemPhysChem, 2005, 6(1): 154-163.
[8] Šaši? S, Itoh T, Ozaki Y. Detailed analysis of single-molecule surface-enhanced resonance Raman scattering spectra of Rhodamine 6G obtained from isolated nano-aggregates of colloidal silver[J]. Journal of Raman Spectroscopy, 2005, 36(6/7): 593-599.
[9] Hildebrandt P, Stockburger M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver[J]. The Journal of Physical Chemistry, 1984, 88(24): 5935-5944.
[10] Doering W E, Nie S M. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement[J]. The Journal of Physical Chemistry B, 2002, 106(2): 311-317.
[11] Maruyama Y,Futamata M. Anion induced SERS activation and quenching for R6G adsorbed on Ag nanoparticles[J]. Chemical Physics Letters, 2007, 448(1): 93-98.
[12] Yajima T, Yu Y, Futamata M. Steric hindrance in cationic and neutral rhodamine 6G molecules adsorbed on Au nanoparticles[J]. Journal of Raman Spectroscopy, 2013, 44(3): 406-411.
[13] Wu D Y, Li J F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5): 1025-1041.
[14] Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 2004, 55: 197-229.
[15] Otsuka I, Iwasaki T. Chloride ion‐induced large scale reconstruction on an electrochemically roughened Ag electrode[J]. Journal of Vacuum Science & Technology A, 1990, 8(1): 530-533.
[16] Watanabe H, Hayazawa N, Inouye Y, et al. DFT vibrational calculations of rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109(11): 5012-5020.
[17] Huang Y F, Zhang M, Zhao L B, et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J]. Angewandte Chemie International Edition, 2014, 53(9): 2353-2357. |