[1] Wang J. Electrochemical biosensing based on noble metal nanoparticles[J]. Microchimica Acta, 2012, 177(3/4): 245-270.[2] Wilner O I, Willner B, Willner I. DNA nanotechnology[J]. Advances in Experimental Medicine and Biology, 2012, 733: 97-114.[3] Arora R K, Saini R P. Biosensors: Way of diagnosis[J]. International Journal of Pharmaceutical Sciences and Research, 2013, 4(7): 2517-2527.[4] Walcarius A, Minteer S D, Wang J, et al. Nanomaterials for bio-functionalized electrodes: Recent trends[J]. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(38): 4878-4908.[5] Xu Y, Wang E. Electrochemical biosensors based on magnetic micro/nanoparticles[J]. Electrochimica Acta, 2012, 84: 62-73.[6] Pedrero M, Campuzano S, Pingarron J M. Electrochemical genosensors based on PCR strategies for microorganisms detection and quantification[J]. Analytical Methods, 2011, 3(4): 780-789.[7] Huang L, Wu J, Zheng L, et al. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A[J]. Analytical Chemistry, 2013, 85(22): 10842-10849.[8] Ji H, Yan F, Lei J, et al. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification[J]. Analytical Chemistry, 2012, 84(16): 7166-7171.[9] Cui L, Ke G, Wang C, et al. A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids[J]. Analyst, 2010, 135(8): 2069-2073.[10] Xuan F, Luo X, Hsing I M. Conformation-dependent exonuclease III activity mediated by metal ions reshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+ detection[J]. Analytical Chemistry, 2013, 85(9): 4586-4593.[11] Lin C, Wu Y, Luo F, et al. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy[J]. Biosensors & Bioelectronics, 2014, 59C: 365-369.[12] Zuo X, Xia F, Xiao Y, et al. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling[J]. Journal of the American Chemical Society, 2010, 132(6): 1816-1818.[13] Liu S, Wang C, Zhang C, et al. Label-free and ultrasensitive electrochemical detection of nucleic acids based on autocatalytic and exonuclease III-assisted target recycling strategy[J]. Analytical Chemistry, 2013, 85(4): 2282-2288.[14] Miranda-Castro R, Marchal D, Limoges B, et al. Homogeneous electrochemical monitoring of exonuclease III activity and its application to nucleic acid testing by target recycling[J]. Chemical Communications, 2012, 48(70): 8772-8774.[15] Chen Y, Jiang B, Xiang Y, et al. Target recycling amplification for sensitive and label-free impedimetricgenosensing based on hairpin DNA and graphene/Au nanocomposites[J]. Chemical Communications, 2011, 47(48): 12798-12800.[16] Yang M, Chen Y, Xiang Y, et al. Target-induced structure switching of DNA for label-free and ultrasensitive electrochemiluminescent detection of proteins[J]. Chemical Communications, 2014, 50(24): 3211-3213.[17] Shlyahovsky B, Pavlov V, Kaganovsky L, et al. Biocatalytic evolution of a biocatalyst marker: Towards the ultrasensitive detection of immunocomplexes and DNA analysis[J]. Angewandte Chemie, 2006, 45(29): 4815-4819.[18] Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes[J]. Analytical Chemistry, 2001, 73(1): 91-102.[19] Weizmann Y, Chenoweth D M, Swager T M. DNA-CNT nanowire networks for DNA detection[J]. Journal of the American Chemical Society, 2011, 133(10): 3238-3241.[20] Wen Y, Pei H, Wan Y, et al. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors[J]. Analytical Chemistry, 2011, 83(19): 7418-7423.[21] Zhang Y, Tang Z, Wang J, et al. Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification[J]. Analytical Chemistry, 2010, 82(15): 6440-6446.[22] Liu G, Wan Y, Gau V, et al. An enzyme-based e-DNA sensor for sequence-specific detection of femtomolar DNA targets[J]. Journal of the American Chemical Society, 2008, 130(21): 6820-6825.[23] Cai Z, Song Y, Wu Y, et al. An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA[J]. Biosensors & Bioelectronics, 2013, 41: 783-788.[24] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266.[25] Brown A K, Li J, Pavot C M B, et al. A lead-dependent DNAzyme with a two-step mechanism[J]. Biochemistry, 2003, 42(23): 7152-7161.[26] Wang F, Orbach R, Willner I. Detection of metal ions (Cu2+, Hg2+) and cocaine by using ligation DNAzyme machinery[J]. Chemistry, 2012, 18(50): 16030-16036.[27] Orbach R, Mostinski L, Wang F, et al. Nucleic acid driven DNA machineries synthesizing Mg2+-dependent DNAzymes: An interplay between DNA sensing and logic-gate operations[J]. Chemistry, 2012, 18(46): 14689-14694, S14689/1-S14689/3.[28] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions[J]. Journal of the American Chemical Society, 2000, 122(42): 10466-10467.[29] Miao X M, Ling L S, Shuai X T. Ultrasensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique[J]. Chemical Communications, 2011, 47(14): 4192-4194.[30] Wu Y F, Cai Z M, Wu G H, et al. A novel signal-on DNAzyme-based electrochemiluminescence, sensor for Pb2+[J]. Sensors and Actuators, B: Chemical, 2014, 191: 60-66.[31] Zhang Z, Sharon E, Freeman R, et al. Fluorescence detection of DNA, adenosine-5'-triphosphate (ATP), and telomerase activity by Zinc(II)-protoporphyrin IX/G-quadruplex labels[J]. Analytical Chemistry, 2012, 84(11): 4789-4797.[32] Wang F, Elbaz J, Teller C, et al. Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process[J]. Angewandte Chemie, 2011, 50(1): 295-299, S295/1-S295/8.[33] Wang F, Elbaz J, Orbach R, et al. Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires[J]. Journal of the American Chemical Society, 2011, 133(43): 17149-17151.[34] Liu X Q, Freeman R, Golub E, et al. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes[J]. ACS Nano, 2011, 5(9): 7648-7655.[35] Elbaz J, Moshe M, Shlyahovsky B, et al. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: A paradigm for DNA sensors aptasensors[J]. Chemistry, 2009, 15(14): 3411-3418.[36] Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots[J]. Journal of the American Chemical Society, 2011, 133(30): 11597-11604.[37] Liu S, Lin Y, Wang L, et al. Exonuclease III-aided autocatalytic DNA biosensing platform for immobilization-free and ultrasensitive electrochemical detection of nucleic acid and protein[J]. Analytical Chemistry, 2014, 86(8): 4008-15.[38] Wu J, Campuzano S, Halford C, et al. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification[J]. Analytical Chemistry, 2010, 82(21): 8830-8837.[39] Campuzano S, Kuralay F, Lobo-Castanon M J, et al. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples[J]. Biosensors & Bioelectronics, 2011, 26(8): 3577-3583.[40] Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors[J]. Angewandte Chemie, 2004, 43(16): 2113-2117.[41] Abad J M, Gass M, Bleloch A, et al. Direct electron transfer to a metalloenzyme redox center coordinated to a monolayer-protected cluster[J]. Journal of the American Chemical Society, 2009, 131(29): 10229-10236.[42] Tang D, Tang J, Li Q, et al. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I[J]. Analytical Chemistry, 2011, 83(19): 7255-7259.[43] Lin C, Cai Z, Wang Y, et al. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise[J], Analytical Chemistry, 2014, 86(14): 6758-6762.[44] Xuan F, Luo X, Hsing I M. Ultrasensitive solution-Phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling[J]. Analytical Chemistry, 2012, 84(12): 5216-5220. |