[1] Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns[J]. Chemical Physics Letters, 1999, 309(3/4): 165-170.[2] Liu Y, Brown C M, Neumann D A, et al. Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns[J]. Carbon, 2012, 50(13): 4953-4964.[3] Krungleviciute V, Ziegler C A, Banjara S R, et al. Neon and CO2 adsorption on open carbon nanohorns[J]. Langmuir, 2013, 29(30): 9388-9397.[4] Kosaka M, Kuroshima S, Kobayashi K, et al. Single-wall carbon nanohorns supporting Pt catalyst in direct methanol fuel cells[J]. The Journal of Physical Chemistry C, 2009, 113(20): 8660-8667.[5] Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers[J]. Molecular Pharmaceutics, 2005, 2(6): 475-480.[6] Penza M, Aversa P, Cassano G, et al. Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating[J]. Sensors and actuators B: Chemical, 2007, 127(1): 168-178.[7] Chen G, Dai H, Zhang S, et al. A sensitive arecoline photoelectrochemical sensor based on graphitic carbon nitride nanosheets activated by carbon nanohorns[J]. RSC Advances, 2014, 4(22): 11099-11102.[8] Shi L, Liu X, Niu W, et al. Hydrogen peroxide biosensor based on direct electrochemistry of soybean Peroxidase immobilized on single-walled carbon nanohorn modified electrode[J]. Biosensors & Bioelectronics, 2009, 24(5): 1159-1163.[9] Liu X, Li H, Wang F, et al. Functionalized single-walled carbon nanohorns for electrochemical biosensing[J]. Biosensors & Bioelectronics, 2010, 25(10): 2194-2199.[10] ?vancara I, Vyt?as K, Barek J, et al. Carbon paste electrodes in modern electroanalysis[J]. Critical Reviews in Analytical Chemistry, 2001, 31(4): 311-345.[11] Zakharchuk N F, Meyer B, Henning H, et al. A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue[J]. Journal of Electroanalytical Chemistry, 1995, 398(1): 23-35.[12] Kalcher K, Kauffmann J M, Wang J, et al. Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990-1993[J]. Electroanalysis, 1995, 7(1): 5-22.[13] Matuszewski W, Trojanowicz M. Graphite paste-based enzymatic glucose electrode for flow injection analysis[J]. Analyst, 1988, 113(5): 735-738.[14] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode[J]. Electrochemistry Communications, 2003, 5(8): 689-694.[15] Antiochia R, Gorton L. Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages[J]. Biosensors and Bioelectronics, 2007, 22(11): 2611-2617.[16] Sanghavi B J, Srivastava A K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode[J]. Electrochimica Acta, 2010, 55(28): 8638-8648.[17] Ensafi A, Karimi-Maleh H, Mallakpour S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode[J]. Colloids and Surfaces B: Biointerfaces, 2013, 104: 186-193.[18] Zhu S, Fan L, Liu X, et al. Determination of concentrated hydrogen peroxide at single-walled carbon nanohorn paste electrode[J]. Electrochemistry Communications, 2008, 10(5): 695-698.[19] Zhu S, Niu W, Li H, et al. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample[J]. Talanta, 2009, 79(5): 1441-1445.[20] Zhu S, Gao W, Zhang L, et al. Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2014, 198: 388-394.[21] Zhu S, Li H, Niu W, et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2009, 25(4): 940-943.[22] Zhu S, Zhang J, Zhao X E, et al. Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns[J]. Microchimica Acta, 2014, 181(3/4): 445-451.[23] Xu G, Gong L, Dai H, et al. Electrochemical bisphenol A sensor based on carbon nanohorns[J]. Analytical Methods, 2013, 5(13): 3328-3333.[24] Yang F, Han J, Zhuo Y, et al. Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection[J]. Biosensors & Bioelectronics, 2014, 55: 360-365.[25] Zhang J, Lei J, Xu C, et al. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR[J]. Analytical Chemistry, 2010, 82(3): 1117-1122.[26] Liu F, Xiang G, Chen X, et al. A novel strategy of procalcitonin detection based on multi-nanomaterials of single-walled carbon nanohorns-hollow Pt nanospheres/PAMAM as signal tags[J]. RSC Advances, 2014, 4(27): 13934-13940.[27] Qian R, Ding L, Bao L, et al. In situ electrochemical assay of cell surface sialic acids featuring highly efficient chemoselective recognition and a dual-functionalized nanohorn probe[J]. Chemical Communications, 2012, 48(32): 3848-3850.[28] Dai H, Yang C, Ma X, et al. A highly sensitive and selective sensing ECL platform for naringin based on beta-cyclodextrin functionalized carbon nanohorns[j]. chemical Communications, 2011, 47(43): 11915-11917.[29] Liu X, Shi L, Niu W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosensors & Bioelectronics, 2008, 23(12): 1887-1890.[30] Xu W, Wang Z, Guo Z, et al. Nanoporous anatase TiO2/single-wall carbon nanohorns composite as superior anode for lithium ion batteries[J]. Journal of Power Sources, 2013, 232: 193-198.[31] Zhao Y, Li J, Ding Y, et al. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries[J]. Chemical Communications, 2011, 47(26): 7416-7418.[32] Zhao Y, Li J, Ding Y, et al. A nanocomposite of SnO2 and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries[J]. RSC Advances, 2011, 1(5): 852-856.[33] Aissa B, Hamoudi Z, Takahashi H, et al. Carbon nanohorns-coated microfibers for use as free-standing electrodes for electrochemical power sources[J]. Electrochemistry Communications, 2009, 11(4): 862-866.[34] Wang Z, Luan D, Madhavi S, et al. Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy & Environmental Science, 2012, 5(1): 5252-5256.[35] Yuge R, Manako T, Nakahara K, et al. The production of an electrochemical capacitor electrode using holey single-wall carbon nanohorns with high specific surface area[J]. Carbon, 2012, 50(15): 5569-5573.[36] Izadi-Najafabadi A, Yamada T, Futaba D N, et al. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite[J]. ACS Nano, 2011, 5(2): 811-819.[37] Gattia D M, Antisari M V, Giorgi L, et al. Study of different nanostructured carbon supports for fuel cell catalysts[J]. Journal of Power Sources, 2009, 194(1): 243-251.[38] Boaventura M, Brandao L, Mendes A. Single-wall nanohorns as electrocatalyst support for high temperature PEM fuel cells[J]. Journal of the Electrochemical Society, 2011, 158(4): B394-B401.[39] Brandao L, Boaventura M, Ribeirinha P. Single wall nanohorns as electrocatalyst support for vapour phase high temperature DMFC[J]. International Journal of Hydrogen Energy, 2012, 37(24): 19073-19081.[40] Niu B, Xu W, Guo Z, et al. Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(9): 7376-7381.[41] Brandao L, Boaventura M, Passeira C, et al. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(10): 9016-9024.[42] Yuan D, Zeng J, Chen J, et al. Synthesis of hollow-cone-like carbon and its application as support material for fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(3): B377-B380.[43] Wen D, Deng L, Zhou M, et al. A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition[J]. Biosensors & Bioelectronics, 2010, 25(6): 1544-1547.[44] Casillas R, Lodermeyer F, Costa R D, et al. Substituting TiCl4-carbon nanohorn interfaces for dye-sensitized solar cells[J]. Advanced Energy Materials, 2014, 4(6), DOI: 10.1002/aenm.201301577. |