电化学(中英文) ›› 2024, Vol. 30 ›› Issue (12): 2415003. doi: 10.61558/2993-074X.3487
所属专题: “下一代二次电池”专题文章
• 综述 • 上一篇
收稿日期:
2024-05-24
修回日期:
2024-07-30
接受日期:
2024-07-30
出版日期:
2024-12-28
发布日期:
2024-08-01
通讯作者:
杨慧军
E-mail:huijun0311@gmail.com
Gang Wu, Wu-Hai Yang, Yang Yang, Hui-Jun Yang*()
Received:
2024-05-24
Revised:
2024-07-30
Accepted:
2024-07-30
Published:
2024-12-28
Online:
2024-08-01
Contact:
Hui-Jun Yang
E-mail:huijun0311@gmail.com
摘要:
能源需求的持续增长和环境污染的加剧构成了亟待解决的主要挑战。开发和利用风能和太阳能等可再生、可持续的清洁能源至关重要。然而,这些间歇性能源的不稳定性使得对储能系统的需求日益迫切。水系锌离子电池(AZIBs)因其独特优势,如高能量密度、成本效益、环保性和安全性,受到广泛关注。然而,AZIBs面临着重大挑战,主要是锌枝晶的形成严重影响了电池的稳定性和寿命,导致电池失效。因此,减少锌枝晶的形成对于提高 AZIBs 的性能至关重要。本综述系统而全面地梳理了当前抑制锌枝晶形成的策略和进展。通过综合分析锌阳极、电解质、隔膜设计和改性以及其他新机制的最新发展,为研究人员提供一个透彻的理解,以指导未来的研究,推动水性锌离子电池技术的发展。
吴刚, 杨武海, 杨洋, 杨慧军. 水性锌离子电池的无枝晶策略:结构、电解质和隔膜[J]. 电化学(中英文), 2024, 30(12): 2415003.
Gang Wu, Wu-Hai Yang, Yang Yang, Hui-Jun Yang. Dendrite-Free Strategies for Aqueous Zinc-Ion Batteries: Structure, Electrolyte, and Separator[J]. Journal of Electrochemistry, 2024, 30(12): 2415003.
Coating layer | Method | Electrolyte | Current density/Capacity (mA·cm−2) / (mAh·cm−2) | Cycle life (h) | Ref. |
---|---|---|---|---|---|
CaCO3 | Doctor blading | 3 mol·L-1 ZnSO4+0.1 mol·L-1 MnSO4 | 0.25/0.05 | 840 | [ |
TiO2 | ALD | 3 mol·L-1 Zn (OTf)2 | 1/1 | 150 | [ |
TiO2 | Doctor blading | 1 mol·L-1 ZnSO4 | 1/1 | 460 | [ |
TiO2-PVDF | Drop cast | 2 mol·L-1 ZnSO4 | 0.885/0.885 | 2000 | [ |
PDMS/TiO2-x | Spin coating | 3 mol·L-1 ZnSO4 | 1/1 | 900 | [ |
ZnO | Chemical deposition | 2 mol·L-1 ZnSO4+0.1 mol·L-1 MnSO4 | 5/1.25 | 500 | [ |
Al2O3 | ALD | 3 mol·L-1 Zn(CF3SO3)2 | 1/1 | 500 | [ |
Oxyhydroxide | Chemical decoration | 2 mol·L-1 ZnSO4 | 1/1 | 4000 | [ |
BaTiO3 | Doctor blading | 2 mol·L-1 ZnSO4 | 1/1 | 2000 | [ |
BaTiO3 | Doctor blading | 1 mol·L-1 ZnSO4+0.1 mol·L-1 MnSO4 | 1/1 | 4100 | [ |
PVDF | Spin coating | 2 mol·L-1 ZnSO4 | 0.25/0.05 | 2000 | [ |
P(VDF-TrFE) | Spin coating | 2 mol·L-1 ZnSO4 | 0.2/0.2 | 2000 | [ |
ZrO2 | Casted | 2 mol·L-1 ZnSO4 | 0.25/0.125 | 3800 | [ |
ZIF-7 | Doctor blading | 2 mol·L-1 ZnSO4 | 0.5/1 | 3000 | [ |
Electrolyte | Current density/Capacity (mA·cm−2/mAh·cm−2) | Cycle life (h) | Ref. |
---|---|---|---|
2 mol·L-1 ZnSO4 + N-Acetyl-ϵ-caprolactam | 0.2/0.2 | 9800 | [ |
1 mol·L-1 ZnSO4 + 6 mol·L-1 Acetamide | 1/1 | 3000 | [ |
2 mol·L-1 ZnSO4 + 0.037wt.% fucoidan | 1/2 | 2800 | [ |
2 mol·L-1 ZnSO4 + 0.5 mmol·L-1 C8TAB | 1/1 | 2000 | [ |
0.5 mol·L-1 Zn(CF3SO3)2 / H2O + TEP (1:1) | 1/1 | 1500 | [ |
2 mol·L-1 ZnSO4 + 67 wt.% maltose | 1/0.5 | 1200 | [ |
1 mol·L-1 ZnSO4 + 5 mmol·L-1 TU | 1/1 | 800 | [ |
4 mol·L-1 Zn(CF3SO3)2 + 0.25 m TMU | 0.5/0.5 | 4080 | [ |
2 mol·L-1 ZnSO4 + 0.9 g β-CD | 4/2 | 1700 | [ |
0.5 mol·L-1 ZnCl2 + 1 mol·L-1 TC | 1/0.5 | 2145 | [ |
2 mol·L-1 ZnSO4 + 5 vol% NMP | 5/5 | 200 | [ |
2 mol·L-1 ZnSO4 + 0.05 mol·L-1 SG | 1/1 | 1000 | [ |
3 mol·L-1 Zn (CF3SO3)2 / H2O + surfoplane | 5/5 | 1100 | [ |
Separator | Thickness (μm) | Transference number | Ref. |
---|---|---|---|
PTFE | 50 | 0.81 | [ |
UiO-66@GF | 260 | 0.67 | [ |
Mxene/GF | 276 | 0.35 | [ |
Cellulose/GF | 260 | 0.71 | [ |
ZrO2/nanocellulose | 37 | 0.45 | [ |
ZrO2/cellulose | 50 | 0.69 | [ |
Cellulose ester | 120 | N/A | [ |
SiO2/cellulose paper | 60 | 0.44 | [ |
Nanocellulose/CMC | N/A | 0.39 | [ |
Cotton fiber | 140 | 0.48 | [ |
Carbonylated cellulose | 21 | 0.528 | [ |
Chitosan modified filter paper | N/A | 0.62 | [ |
PTFE | 50 | 0.81 | [ |
UiO-66@GF | 260 | 0.67 | [ |
Mxene/GF | 276 | 0.35 | [ |
Cellulose/GF | 260 | 0.71 | [ |
ZrO2/nanocellulose | 37 | 0.45 | [ |
ZrO2/cellulose | 50 | 0.69 | [ |
Cellulose ester | 120 | N/A | [ |
SiO2/cellulose paper | 60 | 0.44 | [ |
Nanocellulose/CMC | N/A | 0.39 | [ |
Cotton fiber | 140 | 0.48 | [ |
Carbonylated cellulose | 21 | 0.528 | [ |
Chitosan modified filter paper | N/A | 0.62 | [ |
[1] |
Kang K, Meng Y S, Breger J, Grey C P, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980.
pmid: 16484487 |
[2] |
Schon T B, McAllister B T, Li P F, Seferos D S. The rise of organic electrode materials for energy storage[J]. Chem. Soc. Rev., 2016, 45(22): 6345-6404.
pmid: 27273252 |
[3] | Cano Z P, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature energy, 2018, 3(4): 279-289. |
[4] | Blomgren G E. The development and future of lithium ion batteries[J]. J. Electrochem. Soc., 2016, 164(1): A5019. |
[5] | Lu J, Li L, Park J B, Sun Y K, Wu F, Amine K. Aprotic and aqueous Li-O2 batteries[J]. Chem. Rev., 2014, 114(11): 5611-5640. |
[6] | Wu G, Li X, Zhang Z, Dong P, Xu M L, Peng H L, Zeng X Y, Zhang Y J, Liao S J. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes[J]. J. Mater. Chem. A, 2020, 8(7): 3763-3770. |
[7] | Deng Y P, Liang R, Jiang G, Jiang Y, Yu A, Chen Z. The current state of aqueous Zn-based rechargeable batteries[J]. ACS Phys. Rev. E Energy Lett., 2020, 5(5): 1665-1675. |
[8] | Liang Y L, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5(9): 646-656. |
[9] |
Jia X, Liu C, Neale Z G, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628 pmid: 32786670 |
[10] |
Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Highly reversible zinc metal anode for aqueous batteries[J]. Nat. Mater., 2018, 17(6): 543-549.
doi: 10.1038/s41563-018-0063-z pmid: 29662160 |
[11] | Yuan L, Hao J, Kao C C, Wu C, Liu H K, Dou S X, Qiao S Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy Environ. Sci., 2021, 14(11): 5669-5689. |
[12] | Chao D L, Zhou W H, Xie F X, Ye C, Li H, Jaroniec M, Qiao S Z. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Sci. Adv., 2020, 6(21): eaba4098. |
[13] | Li Q, Chen A, Wang D H, Zhao Y W, Wang X Q, Jin X, Xiong B, Zhi C Y. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries[J]. Nat. Commun., 2022, 13(1): 3699. |
[14] | Wu G, Yang Y, Zhu R J, Yang W H, Yang H J, Zhou H S. The pitfalls of using stainless steel (SS) coin cells in aqueous zinc battery research[J]. Energy Environ. Sci., 2023, 16(10): 4320-4325. |
[15] | Tang D, Zhang X Y, Han D L, Cui C J, Han Z S, Wang L, Li Z G, Zhang B, Liu Y X, Weng Z. Switching hydrophobic interface with ionic valves for reversible zinc batteries[J]. Adv. Mater., 2024, 36(23): 2406071. |
[16] | Zhou L F, Du T, Li J Y, Wang Y S, Gong H, Yang Q R, Chen H, Luo W B, Wang J Z. A strategy for anode modification for future zinc-based battery application[J]. Mater. Horizons, 2022, 9(11): 2722-2751. |
[17] | Sui B B, Sha L, Wang P F, Gong Z, Zhang Y H, Wu Y H, Zhao L N, Tang J J, Shi F N. In situ zinc citrate on the surface of Zn anode improves the performance of aqueous zinc-ion batteries[J]. J. Energy Storage, 2024, 82: 110550. |
[18] | Qiu K Y, Ma G Q, Wang Y Y, Liu M Y, Zhang M Y, Li X T, Qu X H, Yuan W T, Nie X Y, Zhang N. Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries[J]. Adv. Funct. Mater., 2024, 34(18): 2313358. |
[19] | Xu D M, Chen B Q, Ren X T, Han C, Chang Z, Pan A Q, Zhou H S. Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries[J]. Energy Environ. Sci., 2024, 17(2): 642-654. |
[20] | Zong Y, He H W, Wang Y Z, Wu M H, Ren X C, Bai Z C, Wang N A, Ning X, Dou S X. Functionalized separator strategies toward advanced aqueous zinc-ion batteries[J]. Adv. Energy Mater., 2023: 2300403. |
[21] | Wu G, Zhu R J, Yang W H, Yang Y, Okagaki J, Lu Z Y, Sun J M, Yang H J, Yoo E. Extension of aqueous zinc battery life using a robust and hydrophilic polymer separator[J]. Adv. Funct. Mater., 2024, 34(33): 2316619. |
[22] | Li B, Zeng Y, Zhang W S, Lu B A, Yang Q, Zhou J, He Z X. Separator designs for aqueous zinc-ion batteries[J]. Sci. Bull., 2024, 69(5): 688-703. |
[23] | Wippermann K, Schultze J, Kessel R, Penninger J. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J]. Corros. Sci., 1991, 32(2): 205-230. |
[24] | He P, Chen Q, Yan M Y, Xu X, Zhou L, Mai L Q, Nan C W. Building better zinc-ion batteries: A materials perspective[J]. EnergyChem, 2019, 1(3): 100022. |
[25] | Diggle J, Despic A, Bockris J M. The mechanism of the dendritic electrocrystallization of zinc[J]. J. Electrochem. Soc., 1969, 116(11): 1503. |
[26] | Despic A, Diggle J, Bockris J M. Mechanism of the formation of zinc dendrites[J]. J. Electrochem. Soc., 1968, 115(5): 507. |
[27] | Matsushita M, Sano M, Hayakawa Y, Honjo H, Sawada Y. Fractal Structures of zinc metal leaves grown by electrodeposition[J]. Phys. Rev. Lett., 1984, 53(3): 286-289. |
[28] | Cogswell D A. Quantitative phase-field modeling of dendritic electrodeposition[J]. Phys. Rev. E, 2015, 92(1): 011301. |
[29] | Yurkiv V, Foroozan T, Ramasubramanian A, Ragone M, Shahbazian-Yassar R, Mashayek F. Understanding Zn electrodeposits morphology in secondary batteries using phase-field model[J]. J. Electrochem. Soc., 2020, 167(6): 060503. |
[30] | Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2): 485-502. |
[31] | Yu W T, Shang W X, He Y, Zhao Z X, Ma Y Y, Tan P. Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation[J]. Chem. Eng. J., 2022, 431: 134032. |
[32] | Lu X Y, Zhao C Y, Chen A S, Guo Z K, Liu N N, Fan L S, Sun J M, Zhang N Q. Reducing Zn-ion concentration gradient by SO42--immobilized interface coating for dendrite-free Zn anode[J]. Chem. Eng. J., 2023, 451: 138772. |
[33] | Zhang Q, Luan J Y, Huang X B, Zhu L, Tang Y G, Ji X B, Wang H Y. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode[J]. Small, 2020, 16(35): 2000929. |
[34] | Liu S L, Mao J F, Pang W K, Vongsvivut J, Zeng X H, Thomsen L, Wang Y Y, Liu J W, Li D, Guo Z P. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries[J]. Adv. Funct. Mater., 2021, 31(38): 2104281. |
[35] | Yang Y, Yang H J, Zhu R J, Zhou H S. High reversibility at high current density: the zinc electrodeposition principle behind the “trick”[J]. Energy Environ. Sci., 2023, 167(): 2723-2731. |
[36] | Zhai J J, Yan J F, Wang G, Chen S F, Jin D, Zhang H, Zhao W, Zhang Z Y, Huang W G. Surface modification of manganese monoxide through chemical vapor deposition to attain high energy storage performance for aqueous zinc-ion batteries[J]. J. Colloid Interface Sci., 2021, 601: 617-625. |
[37] | Sun S C, Wen Y T, Billings A, Rajabi R, Wang B Y, Zhang K K, Huang K. Protecting Zn anodes by atomic layer deposition of ZrO2 to extend the lifetime of aqueous Zn-ion batteries[J]. Energy Adv., 2024, 3(1): 299-306. |
[38] |
Zheng J, Zhao Q, Tang T, Yin J, Quilty C D, Renderos G D, Liu X, Deng Y, Wang L, Bock D C. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648.
doi: 10.1126/science.aax6873 pmid: 31672899 |
[39] | Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Adv. Energy Mater., 2018, 8(25): 1801090. |
[40] |
An Y L, Tian Y, Xiong S L, Feng J K, Qian Y T. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries[J]. Acs Nano, 2021, 15(7): 11828-11842.
doi: 10.1021/acsnano.1c02928 pmid: 34133130 |
[41] | Cao J, Zhang D D, Gu C, Zhang X Y, Okhawilai M, Wang S M, Han J T, Qin J Q, Huang Y H. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode[J]. Nano Energy, 2021, 89: 106322. |
[42] | Liu Y, Guo T, Liu Q, Xiong F Y, Huang M, An Y K, Wang J H, An Q Y, Liu C, Mai L Q. Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries[J]. Mater. Today Energy, 2022, 28: 101056. |
[43] | Yang H J, Chang Z, Qiao Y, Deng H, Mu X W, He P, Zhou H S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(24): 9377-9381. |
[44] | Zhao K N, Wang C X, Yu Y H, Yan M Y, Wei Q L, He P, Dong Y F, Zhang Z Y, Wang X D, Mai L Q. Ultrathin surface coating enables stabilized zinc metal anode[J]. Adv. Mater. Interfaces, 2018, 5(16): 1800848. |
[45] | Zhang Q, Luan J Y, Huang X B, Wang Q, Sun D, Tang Y G, Ji X B, Wang H Y. Revealing the role of crystal orientation of protective layers for stable zinc anode[J]. Nat. Commun., 2020, 11(1): 3961. |
[46] | Zhao R R, Yang Y, Liu G X, Zhu R J, Huang J B, Chen Z Y, Gao Z H, Chen X, Qie L. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes[J]. Adv. Funct. Mater., 2021, 31(2): 2001867. |
[47] | Guo Z K, Fan L S, Zhao C Y, Chen A S, Liu N N, Zhang Y, Zhang N Q. A dynamic and self-adapting interface coating for stable Zn-metal anodes[J]. Adv. Mater., 2022, 34(2): 2105133. |
[48] | Xie X S, Liang S Q, Gao J W, Guo S, Guo J B, Wang C, Xu G Y, Wu X W, Chen G, Zhou J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy Environ. Sci., 2020, 13(2): 503-510. |
[49] | He H B, Tong H, Song X Y, Song X P, Liu J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries[J]. J. Mater. Chem. A, 2020, 8(16): 7836-7846. |
[50] | He P, Huang J X. Chemical passivation stabilizes Zn anode[J]. Adv. Mater., 2022, 34(18): 2109872. |
[51] | Wu K, Yi J, Liu X, Sun Y, Cui J. Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode[J]. Nano-Micro Lett., 2021, 13(1): 79. |
[52] | Zou P C, Zhang R, Yao L B, Qin J Y, Kisslinger K, Zhuang H L, Xin H L L L. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration[J]. Adv. Energy Mater., 2021, 11(31): 2100982. |
[53] | Hieu L T, So S, Kim I T, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chem. Eng. J., 2021, 411: 128584. |
[54] | Wang Y Z, Guo T C, Yin J, Tian Z N, Ma Y C, Liu Z X, Zhu Y P, Alshareef H N. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers[J]. Adv. Mater., 2022, 34(4): 2106937. |
[55] | Liang P C, Yi J, Liu X Y, Wu K, Wang Z, Cui J, Liu Y Y, Wang Y G, Xia Y Y, Zhang J J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Adv. Funct. Mater., 2020, 30(13): 1908528. |
[56] | Jiang Y Z, Wan Z, He X, Yang J R. Fine-Tuning Electrolyte Concentration and metal-organic framework surface toward actuating fast Zn2+ dehydration for aqueous Zn-ion batteries[J]. Angew. Chem. Int. Ed., 2023, 135(44): e202307274. |
[57] | Xu D M, Ren X T, Xu Y, Wang Y J, Zhang S B, Chen B Q, Chang Z, Pan A Q, Zhou H S. Highly stable aqueous zinc metal batteries enabled by an ultrathin crack-free hydrophobic layer with rigid sub-nanochannels[J]. Adv. Sci., 2023, 10(27): 2303773. |
[58] |
Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017, 356(6336): 415-418.
doi: 10.1126/science.aak9991 pmid: 28450638 |
[59] | Yang Z F, Zhang Q, Li W B, Xie C L, Wu T Q, Hu C, Tang Y G, Wang H Y. A Semi‐solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023, 62(3): e202215306. |
[60] | Zhu R J, Xiong Z T, Yang H J, Huang T H, Jeong S, Kowalski D, Kitano S, Aoki Y, Habazaki H, Zhu C Y. A low-cost and non-corrosive electropolishing strategy for long-life zinc metal anode in rechargeable aqueous battery[J]. Energy Storage Mater., 2022, 46: 223-232. |
[61] | Cai Z, Wang J D, Lu Z H, Zhan R M, Ou Y T, Wang L, Dahbi M, Alami J, Lu J, Amine K, Sun Y M. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry[J]. Angew. Chem. Int. Ed., 2022, 61(14): e202116560. |
[62] | Liang Y X, Qiu M J, Sun P, Mai W J. Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes[J]. Adv. Funct. Mater., 2023, 33(51): 2304878. |
[63] | Yang W H, Du X F, Zhao J W, Chen Z, Li J J, Xie J, Zhang Y J, Cui Z L, Kong Q Y, Zhao Z M, Wang C G, Zhang Q C, Cui G L. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule, 2020, 4(7): 1557-1574. |
[64] | Wan J D, Wang R, Liu Z X, Zhang S L, Hao J N, Mao J F, Li H B, Chao D L, Zhang L H, Zhang C F. Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous zn-ion batteries with 100 °C wide-temperature range[J]. Adv. Mater., 2024, 36(11): 2310623. |
[65] |
Yang W H, Wu G, Zhu R J, Choe Y K, Sun J M, Yang Y, Yang H J, Yoo E. Synergistic cation solvation reorganization and fluorinated interphase for high reversibility and utilization of zinc metal anode[J]. ACS nano, 2023, 17(24): 25335-25347.
doi: 10.1021/acsnano.3c08749 pmid: 38054998 |
[66] | Zhuang W M, Chen Q W, Hou Z, Sun Z Z, Zhang T X, Wan J Y, Huang L M. Examining concentration-iant Zn deposition/stripping behavior in organic alcohol/sulfones-modified aqueous electrolytes[J]. Small, 2023, 19(28): 2300274. |
[67] | Li Z Z, Liao Y Q, Wang Y D, Cong J L, Ji H J, Huang Z M, Huang Y H. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries[J]. Energy Storage Mater., 2023, 56: 174-182. |
[68] | Yang J H, Zhang Y, Li Z L, Xu X, Su X Y, Lai J W, Liu Y, Ding K, Chen L Y, Cai Y P, Zheng Q F. Three birds with one stone: Tetramethylurea as electrolyte additive for highly reversible Zn-metal anode[J]. Adv. Funct. Mater., 2022, 32(49): 2209642. |
[69] | Xu D M, Ren X T, Li H Y, Zhou Y R, Chai S M, Chen Y N, Li H, Bai L S, Chang Z, Pan A Q, Zhou H S. Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery[J]. Angew. Chem. Int. Ed., 2024, 63(21): e202402833. |
[70] | Huang J T, Zhong Y P, Fu H W, Zhao Y X, Li S L, Xie Y M, Zhang H, Lu B G, Chen L N, Liang S Q, Zhou J. Interfacial biomacromolecular engineering toward stable Ah-level aqueous zinc batteries[J]. Adv. Mater., 2024, 36(33): 2406257. |
[71] | Chen W Y, Guo S, Qin L P, Li L Y, Cao X X, Zhou J, Luo Z G, Fang G Z, Liang S Q. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces[J]. Adv. Funct. Mater., 2022, 32(20): 2112609. |
[72] | Qin H Y, Kuang W, Hu N, Zhong X M, Huang D, Shen F, Wei Z W, Huang Y P, Xu J, He H B. Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries[J]. Adv. Funct. Mater., 2022, 32(47): 2206695. |
[73] | Meng C, He W D, Jiang L W, Huang Y, Zhang J T, Liu H, Wang J J. Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions[J]. Adv. Funct. Mater., 2022, 32(47): 2207732. |
[74] | Yao R, Qian L, Sui Y M, Zhao G Y, Guo R S, Hu S Y, Liu P, Zhu H J, Wang F C, Zhi C Y, Yang C. A versatile cation additive enabled highly reversible zinc metal anode[J]. Adv. Energy Mater., 2022, 12(2): 2102780. |
[75] | Li T C, Lim Y, Li X L, Luo S, Lin C, Fang D, Xia S, Wang Y, Yang H Y. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage[J]. Adv. Energy Mater., 2022, 12(15): 2103231. |
[76] | Hao J N, Yuan L B, Zhu Y L, Jaroniec M, Qiao S Z. Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries[J]. Adv. Mater., 2022, 34(44): 2206963. |
[77] | Wang Y, Wang T R, Bu S Y, Zhu J X, Wang Y B, Zhang R, Hong H, Zhang W J, Fan J, Zhi C Y. Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells[J]. Nat. Commun., 2023, 14(1): 1828. |
[78] | Xiao P, Wu Y, Fu J Z, Liang J N, Zhao Y H, Ma Y, Zhai T Y, Li H Q. Enabling high-rate and high-areal-capacity Zn deposition via an interfacial preferentially adsorbed molecular layer[J]. ACS Energy Lett., 2022, 8(1): 31-39. |
[79] | Li H Y, Ren Y, Zhu Y, Tian J M, Sun X Y, Sheng C C, He P, Guo S H, Zhou H S. A bio‐inspired trehalose additive for reversible zinc anodes with improved stability and kinetics[J]. Angew. Chem. Int. Ed., 2023, 135(41): e202310143. |
[80] | Yang Y, Hua H M, Lv Z H, Zhang M H, Liu C Y, Wen Z P, Xie H D, He W D, Zhao J B, Li C C. Reconstruction of electric double layer for long-life aqueous zinc metal batteries[J]. Adv. Funct. Mater., 2023, 33(10): 2212446. |
[81] | Lin Y H, Zhang M, Hu Y Z, Zhang S, Xu Z Q, Feng T T, Zhou H P, Wu M Q. Nitrogen-doped carbon coated zinc as powder-based anode with PVA-gel electrolyte enhancing cycling performance for zinc-ion batteries[J]. Chem. Eng. J., 2023, 472: 145136. |
[82] | Wang Q Y, Liu Y M, Zhang Z D, Cai P, Li H M, Zhou M, Wang W, Wang K L, Jiang K. Activating the intrinsic zincophilicity of PAM hydrogel to stabilize the metal-electrolyte dynamic interface for stable and long-life zinc metal batteries[J]. ChemSusChem, 2024: e202400479. |
[83] | Deng Y Q, Wu Y H, Wang L L, Zhang K F, Wang Y, Yan L F. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth[J]. J. Colloid Interface Sci., 2023, 633: 142-154. |
[84] | Huang Y, Zhang J Y, Liu J W, Li Z X, Jin S Y, Li Z G, Zhang S D, Zhou H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte[J]. Mater. Today Energy, 2019, 14: 100349. |
[85] | Wang F F, Zhang J P, Lu H T, Zhu H B, Chen Z H, Wang L, Yu J Y, You C H, Li W H, Song J W, Weng Z, Yang C P, Yang Q H. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte[J]. Nat. Commun., 2023, 14(1): 4211. |
[86] | Hao Y, Feng D D, Hou L, Li T Y, Jiao Y C, Wu P Y. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode[J]. Adv. Sci., 2022, 9(7): 2104832. |
[87] | He Q, Chang Z, Zhong Y, Chai S M, Fu C Y, Liang S Q, Fang G Z, Pan A Q. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect[J]. ACS Energy Lett., 2023, 8(12): 5253-5263. |
[88] | Liu T C, Hong J, Wang J L, Xu Y, Wang Y. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan[J]. Energy Storage Mater., 2022, 45: 1074-1083. |
[89] | Qin Y, Liu P, Zhang Q, Wang Q, Sun D, Tang Y G, Ren Y, Wang H Y. Advanced filter membrane separator for aqueous zinc-ion batteries[J]. Small, 2020, 16(39): e2003106. |
[90] | Li L B, Peng J X, Jia X F, Zhu X J, Meng B C, Yang K, Chu D W, Yang N X, Yu J. PBC@cellulose-filter paper separator design with efficient ion transport properties toward stabilized zinc-ion battery[J]. Electrochim. Acta, 2022, 430: 141129. |
[91] | Zhou W J, Chen M F, Tian Q H, Chen J Z, Xu X W, Wong C P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries[J]. Energy Storage Mater., 2022, 44: 57-65. |
[92] | Lee B S, Cui S, Xing X, Liu H, Yue X, Petrova V, Lim H D, Chen R, Liu P. Dendrite suppression membranes for rechargeable zinc batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 38928-38935. |
[93] | Wang Y, Long J, Hu J, Sun Z X, Meng L. Polyvinyl alcohol/Lyocell dual-layer paper-based separator for primary zinc-air batteries[J]. J. Power Sources, 2020, 453: 227853. |
[94] | Liu Y F, Liu S D, Xie X S, Li Z C, Wang P J, Lu B A, Liang S Q, Tang Y, Zhou J. A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry[J]. InfoMat, 2023, 5(3): e12374. |
[95] | Yang H J, Zhu R J, Yang Y, Lu Z Y, Chang Z, He P, Zhu C Y, Kitano S, Aoki Y, Habazaki H, Zhou S. Sustainable high-energy aqueous zinc-manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity[J]. Energy Environ. Sci., 2023, 16(5): 2133-2141. |
[96] | Song Y, Ruan P, Mao C, Chang Y, Wang L, Dai L, Zhou P, Lu B, Zhou J, He Z. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nano-Micro Lett., 2022, 14(1): 218. |
[97] | Su Y W, Liu B Z, Zhang Q H, Peng J, Wei C H, Li S, Li W P, Xue Z K, Yang X Z, Sun J Y. Printing-scalable Ti3C2Tx Mxene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes[J]. Adv. Funct. Mater., 2022, 32(32): 2204306. |
[98] | Yang Z F, Li W B, Zhang Q, Xie C L, Ji H M, Tang Y G, Li Y X, Wang H Y. A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries[J]. Mater. Today Energy, 2022, 28: 101076. |
[99] | Yang S C, Zhang Y X, Zhang Y, Deng J, Chen N X, Xie S D, Ma Y, Wang Z H. Designing anti-swelling nanocellulose separators with stable and fast ion transport channels for efficient aqueous zinc-ion batteries[J]. Adv. Funct. Mater., 2023, 33(42): 2304280. |
[100] | Sun Y Y, Yan L, Zhang Q, Wang T B, Zha Y C, Fan L, Jiang H F. Mixed cellulose ester membrane as an ion redistributor to stabilize zinc anode in aqueous zinc ion batteries[J]. J. Colloid Interface Sci., 2023, 641: 610-618. |
[101] | Yang Y, Chen T, Zhu M K, Gao G, Wang Y M, Nie Q Q, Jiang Y P, Xiong T, Lee W S V, Xue J M. Regulating dendrite-free Zn deposition by a self-assembled OH-terminated SiO2 nanosphere layer toward a Zn metal anode[J]. ACS Appl. Mater. Interfaces, 2022, 14(33): 37759-37770. |
[102] | Xu L, Meng T T, Zheng X Y, Li T Y, Brozena A H, Mao Y M, Zhang Q, Clifford B C, Rao J C, Hu L B. Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries[J]. Adv. Funct. Mater., 2023, 33(27): 2302098. |
[103] | Zhang Y, Liu Z P, Li X, Fan L S, Shuai Y, Zhang N Q. Loosening zinc ions from separator boosts stable Zn plating/striping behavior for aqueous zinc ion batteries[J]. Adv. Energy Mater., 2023, 13(42): 2302126. |
[104] | Yang X P, Wu W L, Liu Y Z, Lin Z R, Sun X Q. Chitosan modified filter paper separators with specific ion adsorption to inhibit side reactions and induce uniform Zn deposition for aqueous Zn batteries[J]. Chem. Eng. J., 2022, 450: 137902. |
[105] | Yang H J, Qiao Y, Chang Z, Deng H, Zhu X Y, Zhu R J, Xiong Z T, He P, Zhou H S. Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery[J]. Adv. Mater., 2021, 33(38): e2102415. |
[106] | Li Z G, Wu X H, Yu X Y, Zhou S Y, Qiao Y, Zhou H S, Sun S G. Long-life aqueous Zn-I2 battery enabled by a low-cost multifunctional zeolite membrane separator[J]. Nano Lett., 2022, 22(6): 2538-2546. |
[107] | Yang H, Yang Y, Yang W, Wu G, Zhu R. Correlating hydrogen evolution and zinc deposition/dissolution kinetics to the cyclability of metallic zinc electrodes[J]. Energy Environ. Sci., 2024, 5: 1975-1983. |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[3] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[4] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[5] | 万紫轩, 王超辉, 康雄武. 泡沫铜支撑Ru掺杂Cu3P自支撑催化剂及其析氢性能[J]. 电化学(中英文), 2022, 28(10): 2214005-. |
[6] | 徐黎黎, 任冬燕, 赵骁锋, 易勇. 高导电性和催化活性的Janus-TiNbCO2析氢反应催化材料[J]. 电化学(中英文), 2021, 27(5): 570-578. |
[7] | 尹 灿, 付威威, 方 玲, 游时利, 张慧娟, 王 煜. 具备高效析氢催化效率的三维多孔氮化钒八面体催化剂[J]. 电化学(中英文), 2019, 25(5): 579-588. |
[8] | 陈丹丹, 高学庆, 刘红飞, 张 伟, 曹 睿. 经由[Ni(en)3](SeO3)配合物电镀制备的硒化镍高效电催化水分解反应[J]. 电化学(中英文), 2019, 25(5): 553-561. |
[9] | 蒋鹏杰, 吕 燚, 陈昌淼, 何宏程, 蔡 勇, 张 明. Pt-WO3纳米片的合成及其电催化析氢性能研究[J]. 电化学(中英文), 2019, 25(5): 562-570. |
[10] | 吴则星,王 杰,郭军坡,朱 静,王得丽. 钼基析氢反应电催化剂的研究进展[J]. 电化学(中英文), 2016, 22(2): 192-204. |
[11] | 张立, 程杰, 杨裕生, 文越华, 王新东, 谢自立, . 单液流锌镍电池锌负极性能及电池性能初步研究[J]. 电化学(中英文), 2008, 14(3): 248-252. |
[12] | 虞慰曾,马洁,初一鸣,朱慧哲,汪洪杰,刘顺诚. 在纳米晶Co-Mo/Ni复合电极上的析氢反应[J]. 电化学(中英文), 1996, 2(1): 47-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||