[1] Zhang Y, Ouyang B, Xu J, et al. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts[J]. Advanced Energy Materials, 2016, 6(11): 1600221.
[2] Zhang H, Ma Z, Duan J, et al. Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2016, 10(1): 684-694.
[3] Li Y(李阳), Luo Z Y(罗兆艳), Ge J J(葛君杰), et al. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. Journal of Electrochemistry(电化学), 2018, 24(6): 572-588.
[4] Durst J, Siebel A, Simon C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy & Environmental Science, 2014, 7(7): 2255-2260.
[5] Georgakilas V, Perman J A, Tucek J, et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures[J]. Chemical Reviews, 2015, 115(11): 4744-4822.
[6] Tiwari J N, Sultan S, Myung C W, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nature Energy, 2018, 3(9): 773-782.
[7] Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838.
[8] Tang C, Zhang R, Lu W B, et al. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation[J]. Advanced Materials, 2017, 29(2): 1602441.
[9] Qu Y, Medina H, Wang S W, et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction[J]. Advanced Materials, 2016, 28(44): 9831-9838.
[10] Qu K, Zheng Y, Zhang X, et al. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms[J]. ACS Nano, 2017, 11(7): 7293-7300.
[11] Gao Y(高雨), Zhou J(周娟), Liu Y W(刘欲文), et al. Hydrogen evolution properties on individual MoS2 nanosheets[J]. Journal of Electrochemistry(电化学), 2016, 22(6): 590-595.
[12] Hu Y S, Kleiman-Shwarsctein A, Forman A J, et al. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting[J]. Chemistry of Materials, 2008, 20(12): 3803-3805.
[13] Lian Z, Wang W, Li G, et al. Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16959-16966.
[14] Antony R P, Mathews T, Ramesh C, et al. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8268-8276.
[15] Wang H, Lee H W, Deng Y, et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting[J]. Nature communications, 2015, 6: 7261.
[16] Wu R, Zhang J F, Shi Y M, et al. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(22): 6983-6986.
[17] Luo Z, Miao R, Huan T D, et al. Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions[J]. Advanced Energy Materials, 2016, 6(16): 1600528.
[18] Zhang T, Wu M Y, Yan D Y, et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018, 43: 103-109.
[19] Liu C H, Qiu Y Y, Xia Y J, et al. Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution[J]. Nanotechnology, 2017, 28(44): 445403.
[20] Sun Y F, Gao S, Lei F C, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015, 44(3): 623-636.
[21] Nong S Y, Dong W J, Yin J W, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(17): 5719-5727.
[22] Yan J Q, Wang T, Wu G J, et al. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting[J]. Advanced Materials, 2015, 27(9): 1580-1586.
[23] Zhao Y M, Hu W B, Xia Y D, et al. Preparation and characterization of tungsten oxynitride nanowires[J]. Journal of Materials Chemistry, 2007, 17(41): 4436-4440.
[24] Yang P P(杨翩翩), Huang L Z(黄丽珍), Li Y Y(李影影), et al. Preparation and electrocatalytic activity of nitrogen-doping tungsten carbide catalyst[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 63-71.
[25] Nefedov V I, Salyn Y V, Leonhardt G, et al. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 1977, 10(2): 121-124.
[26] Kerkhof F, Moulijn J, Heeres A. The XPS spectra of the metathesis catalyst tungsten oxide on silica gel[J]. Journal of Electron Spectroscopy and Related Phenomena, 1978, 14(6): 453-466.
[27] Contour J, Mouvier G, Hoogewys M, et al. X-ray photoelectron spectroscopy and electron microscopy of Pt Rh gauzes used for catalytic oxidation of ammonia[J]. Journal of catalysis, 1977, 48(1/3): 217-228.
[28] Kim K, Winograd N. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment[J]. Surface Science, 1974, 43(2): 625-643.
[29] Venezia A, Bertoncello R, Deganello G. X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts[J]. Surface and Interface Analysis, 1995, 23(4): 239-247.
[30] Duckers K, Bonzel H P, Wesner D A. Surface core level shifts of Pt(111) measured with Y Mzeta radiation (132.3 eV)[J]. Surface Science, 1986, 166(1): 141-158.
[31] Duckers K, Bonzel H P. Core and valence level spectroscopy with YMzeta radiation: CO and K on (110) surfaces of Ir, Pt and Au[J]. Surface Science, 1989, 213(1): 25-48.
[32] McEnaney J M, Crompton J C, Callejas J F, et al. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles[J]. Chemical Communications, 2014, 50(75): 11026-11028.
[33] Pu Z, Liu Q, Asiri A M, et al. Tungsten phosphide nano-rod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 21874-21879.
[34] Velazquez J M, Saadi F H, Pieterick A P, et al. Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils[J]. Journal of Electroanalytical Chemistry, 2014, 716: 45-48.
[35] Garcia-Esparza A T, Cha D, Ou Y, et al. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting[J]. ChemSusChem, 2013, 6(1): 168-181.
[36] Pu Z, Liu Q, Asiri A M, et al. One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution[J]. Electrochimica Acta, 2014, 134: 8-12.
[37] Lv Y, Chen Z, Liu Y K, et al. Oxygen vacancy improves the hydrogen evolution reaction property of WO3-x nano-sheets[J]. Nano-Structures & Nano-Objects, 2018, 15: 114-118.
[38] Yan H J, Tian C G, Wang L, et al. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(21): 6325-6329.
[39] Xu Y T, Xiao X, Ye Z M, et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2017, 139(15): 5285-5288. |