[1] |
Zhang L H, Chuai H Y, Liu H, Fan Q, Kuang S Y, Zhang S, Ma X B. Facet dependent oxygen evolution activity of spinel cobalt oxides[J]. J. Electrochem., 2022, 28(2): 139-149.
|
[2] |
Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst towards high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2022, 27(0): 1-14.
|
[3] |
Zheng H Y, Huang X B, Gao H Y, Lu G L, Dong W J, Wang G. Cu@Cu3P core-shell nanowires attached to nickel foam as high-performance electrocatalysts for the hydrogen evolution reaction[J]. Chem. Eur. J., 2019, 25(4): 1083-1089.
|
[4] |
Jin X, Li J, Cui Y T, Liu X Y, Zhang X L, Yao J L, Liu B D. Cu3P-Ni2P hybrid hexagonal nanosheet arrays for efficient hydrogen evolution reaction in alkaline solution[J]. Inorg. Chem., 2019, 58(17): 11630-11635.
doi: 10.1021/acs.inorgchem.9b01567
URL
|
[5] |
Wang Z, Du H T, Liu Z, Wang H, Asiri A M, Sun X P. Interface engineering of a CeO2-Cu3P nanoarray for efficient alkaline hydrogen evolution[J]. Nanoscale, 2018, 10(5): 2213-2217.
doi: 10.1039/c7nr08472b
pmid: 29334116
|
[6] |
Han A, Zhang H Y, Yuan R H, Ji H X, Du P W. Crystalline copper phosphide nanosheets as an efficient Janus catalyst for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2240-2248.
doi: 10.1021/acsami.6b10983
URL
|
[7] |
Swearer D F, Zhao H Q, Zhou L N, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J. Heterometallic antenna-reactor complexes for photocatalysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(32): 8916-8920.
doi: 10.1073/pnas.1609769113
URL
|
[8] |
Li W D, Zhao Y X, Liu Y, Sun M Z, Waterhouse G I N, Huang B L, Zhang K, Zhang T R, Lu S Y. Exploiting Ru-induced lattice strain in coru nanoalloys for robust bifunctional hydrogen production[J]. Angew. Chem. Int. Ed., 2021, 60(6): 3290-3298.
doi: 10.1002/anie.202013985
pmid: 33105050
|
[9] |
Wang Q J, Zhang Z Y, Zhao X Z, Xiao J W, Manoj D, Wei F F, Xiao F, Wang H R, Wang S. MOF-derived copper nitride/phosphide heterostructure coated by multidoped carbon as electrocatalyst for efficient water splitting and neutral-pH hydrogen evolution reaction[J]. ChemEle-ctroChem, 2020, 7(1): 289-298.
|
[10] |
Wei S T, Qi K, Jin Z, Cao J S, Zheng W T, Chen H, Cui X Q. One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting[J]. ACS Omega, 2016, 1(6): 1367-1373.
doi: 10.1021/acsomega.6b00366
pmid: 31457202
|
[11] |
Liu L B, Ge L, Sun Y Y, Jiang B B, Cheng Y F, Xu L, Liao F, Kang Z H, Shao M W. Quasi-layer CO2P-polarized Cu3P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting[J]. Nanoscale, 2019, 11(13): 6394-6400.
doi: 10.1039/C9NR00720B
URL
|
[12] |
Kibsgaard J, Tsai C, Chan K, Benck J D, Nörskov J K, Abild-Pedersen F, Jaramillo T F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J]. Energy Environ. Sci., 2015, 8(10): 3022-3029.
doi: 10.1039/C5EE02179K
URL
|
[13] |
Pawar S M, Pawar B S, Hou B, Kim J, Ahmed A T A, Chavan H S, Jo Y, Cho S, Inamdar A I, Gunjakar J L, Kim H, Cha S, Im H. Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications[J]. J. Mater. Chem. A, 2017, 5(25): 12747-12751.
doi: 10.1039/C7TA02835K
URL
|
[14] |
Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research pro-gress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
|
[15] |
Xu F, Lu J, Luo L L, Yu C, Tang Z, Abbo H S, Titinchi S J J, Zhu J L, Shen P K, Yin S B. Cu2S-Cu3P nanowire arrays self-supported on copper foam as boosting electrocatalysts for hydrogen evolution[J]. Energy Technol., 2019, 7(4): 1800993.
doi: 10.1002/ente.201800993
URL
|
[16] |
Xu T Y, Wei S T, Zhang X L, Zhang D T, Xu Y C, Cui X Q. Sulfur-doped Cu3P|S electrocatalyst for hydrogen evolution reaction[J]. Mater. Res. Express., 2019, 6(7): 075501.
doi: 10.1088/2053-1591/ab1293
URL
|
[17] |
Jiang E J, Jiang J H, Huang G, Pan Z Y, Chen X Y, Wang G F, Ma S J, Zhu J L, Shen P K. Porous nanosheets of Cu3P@N,P Co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst[J]. Sustain. Energy Fuels, 2021, 5(9): 2451-2457.
|
[18] |
Tian J Q, Liu Q, Cheng N Y, Asiri A M, Sun X P. Self-supported Cu3P nanowire arrays as an integrated high-per-formance three-dimensional cathode for generating hydrogen from water[J]. Angew. Chem. Int. Ed., 2014, 53(36): 9577-9581.
doi: 10.1002/anie.201403842
URL
|
[19] |
Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.
doi: 10.1039/D1TA03593B
URL
|
[20] |
Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8: 14580.
doi: 10.1038/ncomms14580
pmid: 28239145
|
[21] |
Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.
doi: 10.1002/adma.201807780
URL
|
[22] |
Mao J J, He C T, Pei J J, Chen W X, He D S, He Y Q, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice[J]. Nat. Commun., 2018, 9: 4958.
doi: 10.1038/s41467-018-07288-6
pmid: 30470747
|
[23] |
Chang Q B, Ma J W, Zhu Y Z, Li Z, Xu D Y, Duan X Z, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2018, 6(5): 6388-6394.
doi: 10.1021/acssuschemeng.8b00187
URL
|
[24] |
Yao M Q, Wang B J, Sun B L, Luo L F, Chen Y J, Wang J W, Wang N, Komarneni S, Niu X B, Hu W C. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction[J]. Appl. Catal. B, 2021, 280: 119451.
doi: 10.1016/j.apcatb.2020.119451
URL
|
[25] |
Dai D M, Wei B, Li Y, Ma X, Liang S, Wang S, Xu L L. Self-supported hierarchical Fe(PO3)2@Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media[J]. J. Alloys Compd., 2020, 820: 153185.
doi: 10.1016/j.jallcom.2019.153185
URL
|
[26] |
Li Y P, Zhang J H, Liu Y, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis[J]. Sci. Adv., 2020, 6(44): eabb4197.
|
[27] |
Pu Z H, Amiinu I S, Kou Z K, Li W Q, Mu S C. RuP2-basedcatalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values[J]. Angew. Chem. Int. Ed, 2017, 56(38): 11559-11564.
doi: 10.1002/anie.201704911
URL
|
[28] |
Yu L P, Zhang J, Dang Y L, He J K, Tobin Z, Kerns P, Dou Y H, Jiang Y, He Y H, Suib S L. In situ growth of Ni2P-Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst[J]. ACS Catal., 2019, 9(8): 6919-6928.
doi: 10.1021/acscatal.9b00494
URL
|
[29] |
Ma X X, Chang Y Q, Zhang Z, Tang J L. Forest-like NiCoP@Cu3P supported on copper foam as bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. J. Mater. Chem. A, 2017, 6: 2100-2106.
doi: 10.1039/C7TA09619D
URL
|
[30] |
Wang H, Zhou T T, Li P L, Cao Z, Xi W, Zhao Y F, Ding Y. Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting[J]. ACS Sustain. Chem. Eng., 2017, 6(1): 380-388.
doi: 10.1021/acssuschemeng.7b02654
URL
|
[31] |
Hai X, Xi S B, Mitchell S, Harrath K, Xu H M, Akl D F, Kong D B, Li J, Li Z J, Sun T, Yang H M, Cui Y G, Su C L, Zhao X X, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries[J]. Nat. Nanotechnol., 2022, 17(2): 174-181.
doi: 10.1038/s41565-021-01022-y
URL
|
[32] |
Chen Z, Kronawitter C X, Koel B E. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction[J]. Phys. Chem. Chem. Phys., 2015, 17(43): 29387-29393.
doi: 10.1039/c5cp02876k
pmid: 26473390
|
[33] |
Wan R D, Luo M, Wen J B, Liu S L, Kang X W, Tian Y. Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation[J]. J. Energy Chem., 2022, 69: 44-53.
doi: 10.1016/j.jechem.2021.12.045
URL
|
[34] |
Wei Z Q, Hu X, Ning S L, Kang X W, Chen S W. Supported heterostructured MoC/Mo2C nanoribbons and nanoflowers as highly active electrocatalysts for hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 8458-8465.
doi: 10.1021/acssuschemeng.9b00210
URL
|