电化学(中英文) ›› 2023, Vol. 29 ›› Issue (3): 2217006. doi: 10.13208/j.electrochem.2217006
所属专题: “下一代二次电池”专题文章
化五星a, 夏静怡a, 胡忠豪a, 李欢a, 吕伟b,*(), 杨全红a,*()
收稿日期:
2022-07-30
修回日期:
2022-08-23
接受日期:
2022-09-15
出版日期:
2023-03-28
发布日期:
2022-09-19
Wu-Xing Huaa, Jing-Yi Xiaa, Zhong-Hao Hua, Huan Lia, Wei Lvb,*(), Quan-Hong Yanga,*()
Received:
2022-07-30
Revised:
2022-08-23
Accepted:
2022-09-15
Published:
2023-03-28
Online:
2022-09-19
Contact:
*Tel: (86-755)86964142, E-mail: About author:
First author contact:#W. H. and J. X. contributed equally to this work.
Supported by:
摘要:
锂硫电池是极具应用潜力的下一代高能量密度电池体系之一。然而,其充放电中间产物多硫化锂的“穿梭效应”不仅消耗大量电解液,还导致硫活性物质利用率低、循环寿命短,是锂硫电池产业化进程中的主要瓶颈之一。引入催化剂加速硫活性物质转化速率,减少多硫化锂在电解液中的累积浓度,是抑制穿梭效应的有效解决策略。高效的催化剂应具备丰富的催化活性位点,以确保高效吸附多硫化锂并加速其向不溶的充放电产物转化。本文制备出硫掺杂石墨烯表面原位负载的双金属硫化物NiCo2S4(NCS@SG)并将其作为催化剂应用于锂硫电池的中间层。相比于单金属硫化物(CoS),NiCo2S4催化剂具有多活性中心催化位点,可以更好地吸附多硫化锂并促进其向放电产物快速转化。应用上述中间层后,电池的充放电比容量、库仑效率和循环稳定性得到了明显提升。当硫的负载达到15.3 mg·cm-2时,经过50次循环后,具有NCS@SG中间层的电池获得了高达93.9%的容量保持率。上述结果表明,设计双金属基催化剂是优化锂硫电池催化剂活性和反应效率的重要方向。
化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006.
Wu-Xing Hua, Jing-Yi Xia, Zhong-Hao Hu, Huan Li, Wei Lv, Quan-Hong Yang. Bimetallic Compound Catalysts with Multiple Active Centers for Accelerated Polysulfide Conversion in Li-S Batteries[J]. Journal of Electrochemistry, 2023, 29(3): 2217006.
[1] |
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11: 19-29.
doi: 10.1038/nmat3191 |
[2] |
Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: progress and prospects[J]. Adv. Mater., 2015, 27(12): 1980-2006.
doi: 10.1002/adma.v27.12 URL |
[3] |
Chen X, Hou T Z, Persson K A, Zhang Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives[J]. Mater. Today, 2019, 22: 142-158.
doi: 10.1016/j.mattod.2018.04.007 URL |
[4] |
Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. J. Mater. Chem. A., 2013, 1(33): 9382-9394.
doi: 10.1039/c3ta11045a URL |
[5] |
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6: 5682.
doi: 10.1038/ncomms6682 pmid: 25562485 |
[6] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
doi: 10.1038/nmat2460 |
[7] |
Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2012, 134(45): 18510-18513.
doi: 10.1021/ja308170k pmid: 23101502 |
[8] |
Zheng G Y, Zhang Q F, Cha J J, Yang Y, Li W Y, Seh Z W, Cui Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Lett., 2013, 13(3): 1265-1270.
doi: 10.1021/nl304795g pmid: 23394300 |
[9] |
Zhang J T, Hu H, Li Z, Lou X W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angew. Chem., Int. Ed., 2016, 55(12): 3982-3986.
doi: 10.1002/anie.201511632 pmid: 26894940 |
[10] |
Hua W X, Yang Z, Nie H G, Li Z Y, Yang J Z, Guo Z Q, Ruan C P, Chen X A, Huang S M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries[J]. ACS Nano, 2017, 11(2): 2209-2218.
doi: 10.1021/acsnano.6b08627 pmid: 28146627 |
[11] |
Fang R P, Zhao S Y, Sun Z H, Wang W, Cheng H M, Li F. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29(48): 1606823.
doi: 10.1002/adma.v29.48 URL |
[12] |
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.
doi: 10.1002/advs.201700270 URL |
[13] |
Geng C N, Hua W X, Wang D W, Ling G W, Zhang C, Yang Q H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques[J]. SusMat, 2021, 1(1): 51-65.
doi: 10.1002/sus2.v1.1 URL |
[14] |
Wang L, Hua W X, Wan X, Feng Z, Hu Z H, Li H, Niu J T, Wang L X, Wang A S, Liu J Y, Lang X Y, Wang G, Li W F, Yang Q H, Wang W C. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(14): 2110279.
doi: 10.1002/adma.v34.14 URL |
[15] |
Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nat. Catal., 2020, 3(9): 762-770.
doi: 10.1038/s41929-020-0498-x |
[16] |
Han Z Y, Zhao S Y, Xiao J W, Zhong X W, Sheng J Z, Lv W, Zhang Q F, Zhou G M, Cheng H M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries[J]. Adv. Mater., 2021, 33(44): 2105947.
doi: 10.1002/adma.v33.44 URL |
[17] |
Li Z H, Zhou C, Hua J H, Hong X F, Sun C L, Li H W, Xu X, Mai L Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability[J]. Adv. Mater., 2020, 32(10): 1907444.
doi: 10.1002/adma.v32.10 URL |
[18] |
Hua W X, Li H, Pei C, Xia J Y, Sun Y F, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B S, Qiao S Z, Wan Y, Yang Q H. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(38): 2101006.
doi: 10.1002/adma.v33.38 URL |
[19] |
Lin H B, Yang L Q, Jiang X, Li G C, Zhang T R, Yao Q F, Zheng G W, Lee J Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(6): 1476-1486.
doi: 10.1039/C7EE01047H URL |
[20] |
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
doi: 10.1021/acs.nanolett.5b04166 pmid: 26713782 |
[21] |
Xia J Y, Hua W X, Wang L, Sun Y F, Geng C N, Zhang C, Wang W C, Wan Y, Yang Q H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li-S batteries[J]. Adv. Funct. Mater., 2021, 31(26): 2101980.
doi: 10.1002/adfm.v31.26 URL |
[22] |
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.
doi: 10.1038/ncomms14627 pmid: 28256504 |
[23] |
Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry[J]. Joule, 2018, 2(12): 2681-2693.
doi: 10.1016/j.joule.2018.08.010 URL |
[24] |
Yang Y X, Zhong Y R, Shi Q W, Wang Z H, Sun K N, Wang H L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions[J]. Angew. Chem., Int. Ed., 2018, 57(47): 15549-15552.
doi: 10.1002/anie.201808311 pmid: 30255539 |
[25] |
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.
doi: 10.1039/C7EE01430A URL |
[26] |
Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(19): 1900219.
doi: 10.1002/aenm.v9.19 URL |
[27] |
Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He Y B, Zhang Q F, Kang F Y, Lv W, Yang Q H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(32): 2000315.
doi: 10.1002/adma.v32.32 URL |
[28] |
Zhao M, Peng H J, Zhang Z W, Li B Q, Chen X, Xie J, Chen X, Wei J Y, Zhang Q, Huang J Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angew. Chem. Int. Ed., 2019, 58(12): 3779-3783.
doi: 10.1002/anie.v58.12 URL |
[29] |
Zeng P, Liu C, Zhao X F, Yuan C, Chen Y G, Lin H P, Zhang L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries[J]. ACS Nano, 2020, 14(9): 11558-11569.
doi: 10.1021/acsnano.0c04054 pmid: 32865976 |
[30] |
Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(5): 840-845.
doi: 10.1073/pnas.1615837114 URL |
[31] |
Zhang B, Luo C, Deng Y Q, Huang Z J, Zhou G M, Lv W, He Y B, Wan Y, Kang F Y, Yang Q H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries[J]. Adv. Energy Mater., 2020, 10(15): 2000091.
doi: 10.1002/aenm.v10.15 URL |
[32] |
Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage[J]. ACS Nano, 2009, 3(11): 3730-3736.
doi: 10.1021/nn900933u pmid: 19824654 |
[33] |
Zheng C, Niu S Z, Lv W, Zhou G M, Li J, Fan S X, Deng Y Q, Pan Z Z, Li B H, Kang F Y, Yang Q H. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312.
doi: 10.1016/j.nanoen.2017.01.040 URL |
[34] |
Xiao Z B, Yang Z, Wang L, Nie H G, Zhong M E, Lai Q Q, Xu X J, Zhang L J, Huang S M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Adv. Mater., 2015, 27(18): 2891-2898.
doi: 10.1002/adma.201405637 |
[35] |
Liu Q, Jin J T, Zhang J Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. ACS Appl. Mater. Inter., 2013, 5(11): 5002-5008.
doi: 10.1021/am4007897 URL |
[36] |
Zhang Z, Shao A H, Xiong D G, Yu J, Koratkar N, Yang Z Y. Efficient polysulfide redox enabled by lattice-distorted Ni3Fe intermetallic electrocatalyst-modified separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(17): 19572-19580.
doi: 10.1021/acsami.0c02942 URL |
[37] |
Li H, Meng R W, Guo Y, Chen B A, Jiao Y, Ye C, Long Y, Tadich A, Yang Q H, Jaroniec M, Qiao S Z. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries[J]. Nat. Commun., 2021, 12(1): 5714.
doi: 10.1038/s41467-021-26056-7 pmid: 34588446 |
[38] |
Liu B, Huang S Z, Kong D Z, Hu J P, Yang H Y. Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li-S battery[J]. J. Mater. Chem. A, 2019, 7(13): 7604-7613
doi: 10.1039/c9ta00701f |
[39] |
Xiao Z B, Yang Z, Li Z L, Li P Y, Wang R H. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix[J]. ACS Nano, 2019, 13(3): 3404-3412.
doi: 10.1021/acsnano.8b09296 URL |
[40] |
Al Salem H, Babu G, Rao C V, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545.
doi: 10.1021/jacs.5b04472 pmid: 26331670 |
[41] |
Hao B Y, Li H, Lv W, Zhang Y B, Niu S Z, Qi Q, Xiao S J, Li J, Kang F Y, Yang Q H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries[J]. Nano Energy, 2019, 60: 305-311.
doi: 10.1016/j.nanoen.2019.03.064 URL |
[42] |
Xu K L, Liu X J, Liang J W, Cai J Y, Zhang K L, Lu Y, Wu X, Zhu M G, Liu Y, Zhu Y C, Wang G M, Qian Y T. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Lett., 2018, 3(2): 420-427.
doi: 10.1021/acsenergylett.7b01249 URL |
[43] |
Luo L, Chung S H, Manthiram A. Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(24): 1801014.
doi: 10.1002/aenm.v8.24 URL |
[44] |
Shen Z H, Cao M Q, Zhang Z L, Pu J, Zhong C L, Li J C, Ma H X, Li F J, Zhu J, Pan F, Zhang H G. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery[J]. Adv. Funct. Mater., 2020, 30(3): 1906661.
doi: 10.1002/adfm.v30.3 URL |
[45] |
Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
doi: 10.1016/j.esci.2021.08.001 URL |
[46] |
Zhao M, Peng Y Q, Li B Q, Zhang X Q, Huang J Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 56: 203-208.
doi: 10.1016/j.jechem.2020.07.054 URL |
[47] |
Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 42: 205-214.
doi: 10.1016/j.nanoen.2017.10.053 URL |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[5] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[6] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[7] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[8] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[9] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[10] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[11] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[12] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[13] | 范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387. |
[14] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[15] | 魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||