电化学(中英文) ›› 2023, Vol. 29 ›› Issue (2): 2215006. doi: 10.13208/j.electrochem.2215006
所属专题: “电催化和燃料电池”专题文章
邹庚a,b, 冯炜程a,b, 宋月锋a,*(), 汪国雄a,*()
收稿日期:
2022-06-02
修回日期:
2022-06-23
接受日期:
2022-08-31
出版日期:
2023-02-28
发布日期:
2022-09-04
Geng Zoua,b, Wei-Cheng Fenga,b, Yue-Feng Songa,*(), Guo-Xiong Wanga,*()
Received:
2022-06-02
Revised:
2022-06-23
Accepted:
2022-08-31
Published:
2023-02-28
Online:
2022-09-04
Contact:
*Yue-Feng Song, Tel: (86-411)84379511, E-mail address: 摘要:
近年来,固体氧化物电解池(SOEC)作为一种高效的电化学能量转换装置,由于其大电流密度、高法拉第效率和高能量效率受到广泛的关注。阳极析氧反应(OER)是SOEC中重要的电极反应,涉及四电子转移过程,反应动力学缓慢,在电解过程中阳极极化电阻较大且能耗高。因此,设计高效稳定的阳极材料对提高SOEC性能及推动SOEC实际应用至关重要。近年来,高性能阳极研究取得了一系列进展。在本综述中,重点介绍了CO2和H2O电解的反应机理,总结了不同类型阳极材料的物理化学和电化学性能,讨论了各种有效的阳极优化策略。此外,还对SOEC的未来研究进行了展望。这对阳极材料的发展和SOEC的实际应用有一定的指导意义。
邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006.
Geng Zou, Wei-Cheng Feng, Yue-Feng Song, Guo-Xiong Wang. Recent Advances in Anode Materials of Solid Oxide Electrolysis Cells[J]. Journal of Electrochemistry, 2023, 29(2): 2215006.
Material | Electrical conductivity (S·cm−1) | Ionic conductivity (S·cm−1) | D* (cm2·s−1) | k* (cm·s−1) | TEC (K−1) |
---|---|---|---|---|---|
LSM[5, 6, 10] | 1.0×102 (800 °C) | 1.0×10−7-1.0×10−8 (800 °C) | 3.2×10−16 (700 °C) | 2.0×10−9 (700 °C) | ca. 10.0×10−6 |
LSC[14, 15] | 1.6×103 (800 °C) | 2.2×10−1 (800 °C) | 9.5×10−7 (800 °C) | 7.0×10−6 (800 °C) | 20.5×10−6 |
LSF[24-26] | 213.0 (650 °C) | 0.2×10−2-4.7×10−2 (800 °C) | ——— | ——— | 11.7×10−6 |
LSCF[39, 40, 42, 43] | 57.0 (600 °C) | 2.6×10−4 (800 °C) | 5.0×10−7 (900 °C) | 4.0×10−5 (900 °C) | 17.5×10−6 |
BSCF[47-49, 51] | ——— | 1.9 (900 °C) | 8.0×10−7 (800 °C) | 5.0×10−5 (750 °C) | 19.7×10−6 |
SFM[55, 56, 58] | 20.9 (600 °C) | 2.1×10−4 (800 °C) | 9.0×10−6 (800 °C) | 8.0×10−5 (800 °C) | ca. 16.0×10−6 |
PBC[76, 77] | 645.0 (600 °C) | ——— | ca. 1.0×10−5 (350 °C) | ca. 1.0×10−3 (350 °C) | 21.8×10−6 |
GBC[76, 77] | 318.0 (600 °C) | ——— | 3.0×10−7 (350 °C) | 2.0×10−6 (350 °C) | 19.3×10−6 |
NBC[76, 78] | 308.0 (600 °C) | ——— | 3.5×10−5 (700 °C) | ca. 3.0×10−4 (700 °C) | 20.0×10−6 |
SBC[77, 79] | 815.0-434.0 (500-800 °C) | ——— | 2.8 × 10−6 (700 °C) | 1.9 × 10−3 (700 °C) | ——— |
Anode | Cathode | Fed gas | Current Density (A·cm−2) |
---|---|---|---|
LSM-YSZ[84] | Ni-YSZ | 80% H2O-20% H2 | 0.85@1.3 V |
RuO2+LSM-YSZ[85] | Ni-YSZ | 95% CO2-5% N2 | 0.74@1.2 V |
Au+LSM-YSZ[3] | Ni-YSZ | 95% CO2-5% N2 | 0.94@1.4 V |
STFC+LSM-YSZ[86] | Ni-YSZ | 50% H2O-50% H2 | 2.00@1.3 V |
LSCN+LSM-GDC[19] | Ni-YSZ | 42.8% H2O-14.4% H2-42.8% CO2 | 1.16@1.3 V |
LSM-DYSB[87] | Ni-YSZ | 50% H2O-50% H2 | 1.32@1.3 V |
LSC-GDC[16] | Ni-YSZ | 90% H2O-10% H2 | 0.60@1.1 V |
LNC-GDC[21] | LNC-GDC | Pure CO2 | 2.32@2.0 V |
LNC-GDC[22] | Ni-YSZ | 50% H2O-50% H2 | 2.00@1.2 V |
LSF-YSZ[27] | Ni-YSZ | 50% H2O-25% H2-25% N2 | 0.66@1.3 V |
LSF-GDC[88] | Ni-YSZ | 50% CO2-50% H2% | 2.50@1.9 V |
Pt-LSF-GDC[88] | Ni-YSZ | 50% CO2-50% H2% | 3.50@1.9 V |
LSFNb[28] | Ni-YSZ | 50% H2O-50% H2 | 0.89@1.3 V |
LSFN-GDC[30] | LSFN-GDC | Pure CO2 | 1.09@1.3 V |
LSFM-GDC[32] | LSFM-GDC | Pure CO2 | 1.11@2.0 V |
BSFTa[34] | Ni-YSZ | 70% CO2-30% CO | 0.81@1.5 V |
BSF[34] | Ni-YSZ | 70% CO2-30% CO | 0.45@1.5 V |
LCFN-GDC[36] | LCFN-GDC | Pure CO2 | 1.41@2.0 V |
LSCF-GDC[16] | Ni-YSZ | 90% H2O-10% H2 | 0.60@1.3 V |
BSCFTa[53] | Ni-YSZ | 70% H2O-30% H2 | 1.06@1.5 V |
RuO2-LBSCF[52] | Ni-YSZ | 70% CO2-30% CO | 1.40@1.3 V |
BCFNb[54] | Ni-GDC | 40% H2O-60% H2 | 3.24@1.5 V |
SFM[57] | SFM | 40% H2O-60% H2 | 0.88@1.3 V |
Ni-SFM-SDC[89] | SFM-SDC | 74% H2-26% H2O | 1.02@0.5 V |
SFM-SDC[89] | SFM-SDC | 74% H2-26% H2O | 0.34@0.5 V |
Ru-SFM-SDC[90] | SFM-SDC | 74% H2-26% H2O | 1.06@0.6 V |
LNO[70] | Ni-YSZ | 50% H2-50% H2O | 1.42@1.5 V |
LNCO[70] | Ni-YSZ | 50% H2-50% H2O | 1.60@1.5 V |
Material | Advantage | Disadvantage |
---|---|---|
ABO3−δ-type perovskite oxides | High electronic conductivity | Sr segregation, low ionic conductivity |
Double perovskites | Large D* and k* | Poor stability |
RP phase oxides | Large D*, k*, matched TEC with electrolytes, and high OER activities | Poor stability |
Spinel oxides | Suppressed Sr segregation | Poor stability and low ionic conductivity |
[1] |
Sussmann R, Rettinger M. Can we measure a COVID-19-related slowdown in atmospheric CO2 growth? sensitivity of total carbon column observations[J]. Rem. Sens., 2020, 12(15): 2387.
doi: 10.3390/rs12152387 URL |
[2] |
Song Y F, Zhang X M, Xie K, Wang G X, Bao X H. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects[J]. Adv. Mater., 2019, 31(50): 1902033.
doi: 10.1002/adma.v31.50 URL |
[3] |
Song Y F, Zhang X M, Zhou Y J, Lü H F, Liu Q X, Feng W C, Wang G X, Bao X H. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode[J]. J. Energy Chem., 2019, 35: 181-187.
doi: 10.1016/j.jechem.2019.03.013 URL |
[4] |
Wu T, Zhang W Q, Li Y F, Zheng Y, Yu B, Chen J, Sun X M. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J]. Adv. Energy Mater., 2018, 8(33): 1802203.
doi: 10.1002/aenm.v8.33 URL |
[5] |
Fleig J. Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance[J]. Annu. Rev. Mater. Res., 2003, 33: 361-382.
doi: 10.1146/matsci.2003.33.issue-1 URL |
[6] |
Shirai Y, Hashimoto S, Sato K, Yashiro K, Amezawa K, Mizusaki J, Kawada T. Crystal structure and thermal expansion behavior of oxygen stoichiometric lanthanum strontium manganite at high temperature[J]. Solid State Ionics, 2014, 256: 83-88.
doi: 10.1016/j.ssi.2013.12.042 URL |
[7] |
Shen M H, Ai F J, Ma H L, Xu H, Zhang Y Y. Progress and prospects of reversible solid oxide fuel cell materials[J]. Iscience, 2021, 24(12): 103464.
doi: 10.1016/j.isci.2021.103464 URL |
[8] |
Mikkelsen L, Skou E. Determination of the oxygen chemical diffusion coefficient in perovskites by a thermogravimetric method[J]. J. Therm. Anal. Calorim., 2001, 64(3): 873-878.
doi: 10.1023/A:1011542123348 URL |
[9] |
Ebbesen S D, Mogensen M. Electrolysis of carbon dioxide in solid oxide electrolysis cells[J]. J. Power Sources, 2009, 193(1): 349-358.
doi: 10.1016/j.jpowsour.2009.02.093 URL |
[10] |
Steele B C H, Hori K M, Uchino S. Kinetic parameters influencing the performance of IT-SOFC composite electrodes[J]. Solid State Ionics, 2000, 135(1): 445-450.
doi: 10.1016/S0167-2738(00)00393-3 URL |
[11] |
Chen K F, Jiang S P. Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2011, 36(17): 10541-10549.
doi: 10.1016/j.ijhydene.2011.05.103 URL |
[12] |
Knibbe R, Traulsen M L, Hauch A, Ebbesen S D, Mogensen M. Solid oxide electrolysis cells: Degradation at high current densities[J]. J. Electrochem. Soc., 2010, 157(8): B1209-B1217.
doi: 10.1149/1.3447752 URL |
[13] |
Mahata A, Datta P, Basu R N. Synthesis and characterization of Ca doped LaMnO3 as potential anode material for solid oxide electrolysis cells[J]. Ceram. Int., 2017, 43(1): 433-438.
doi: 10.1016/j.ceramint.2016.09.177 URL |
[14] |
Fang Q P, Menzler N H, Blum L. Degradation analysis of long-term solid oxide fuel cell stacks with respect to chromium poisoning in La0.58Sr0.4Co0.2Fe0.8O3-δ and La0.6Sr0.4CoO3-δ cathodes[J]. J. Electrochem. Soc., 2021, 168(10): 104505.
doi: 10.1149/1945-7111/ac2c11 |
[15] |
Develos Bagarinao K, De Vero J, Kishimoto H, Ishiyama T, Yamaji K, Horita T, Yokokawa H. Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells[J]. Nano Energy, 2018, 52: 369-380.
doi: 10.1016/j.nanoen.2018.08.014 URL |
[16] |
Zheng Y F, Li Q S, Chen T, Wu W, Xu C, Wang W G. Comparison of performance and degradation of large-scale solid oxide electrolysis cells in stack with different composite air electrodes[J]. Int. J. Hydrogen Energy, 2015, 40(6): 2460-2472.
doi: 10.1016/j.ijhydene.2014.12.101 URL |
[17] |
Sharma V I, Yildiz B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode[J]. J. Electrochem. Soc., 2010, 157(3): B441-B448.
doi: 10.1149/1.3288835 URL |
[18] |
Zheng H Y, Tian Y F, Zhang L L, Chi B, Pu J, Jian L. La0.8Sr0.2Co0.8Ni0.2o3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells[J]. J. Power Sources, 2018, 383: 93-101.
doi: 10.1016/j.jpowsour.2018.02.041 URL |
[19] |
Tan Y, Duan N Q, Wang A, Yan D, Chi B, Wang N, Pu J, Li J. Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3-δ oxygen electrode for intermediate temperature solid oxide electrolysis cells[J]. J. Power Sources, 2016, 305: 168-174.
doi: 10.1016/j.jpowsour.2015.11.094 URL |
[20] |
Chrzan A, Ovtar S, Jasinski P, Chen M, Hauch A. High performance LaNi1-xCoxO3-δ(x=0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells[J]. J. Power Sources, 2017, 353: 67-76.
doi: 10.1016/j.jpowsour.2017.03.148 URL |
[21] |
Duan N Q, Yang J J, Gao M R, Zhang B W, Luo J L, Du Y H, Xu M H, Jia L C, Chi B, Li J. Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3-δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells[J]. Nano Energy, 2020, 77: 105207.
doi: 10.1016/j.nanoen.2020.105207 URL |
[22] |
Ma Q L, Dierickx S, Vibhu V, Sebold D, de Haart L G J, Weber A, Guillon O, Menzler N H. Performances of solid oxide cells with La0.97Ni0.5Co0.5O3-δ as air-electrodes[J]. J. Electrochem. Soc., 2020, 167(8): 084522.
doi: 10.1149/1945-7111/ab91cc |
[23] |
Khan M S, Xu X Y, Li M R, Rehman A U, Knibbe R, Yago A J, Zhu Z H. Evaluation of SrCo0.8Nb0.2O3-δ, SrCo0.8Ta0.2O3-δ and SrCo0.8Nb0.1Ta0.1O3-δ as air electrode materials for solid oxide electrolysis and reversible solid oxide cells[J]. Electrochim. Acta, 2019, 321: 134654.
doi: 10.1016/j.electacta.2019.134654 URL |
[24] |
Patrakeev M V, Bahteeva J A, Mitberg E B, Leonidov I A, Kozhevnikov V L, Poeppelmeier KR. Electron/hole and ion transport in La1-xSrxFeo3-δ[J]. J. Solid State Chem., 2003, 172(1): 219-231.
doi: 10.1016/S0022-4596(03)00040-9 URL |
[25] |
Niu Y J, Sunarso J, Liang F L, Zhou W, Zhu Z H, Shao Z P. A comparative study of oxygen reduction reaction on Bi- and La-doped SrFeO3-δ perovskite cathodes[J]. J. Electrochem. Soc., 2011, 158(2): B132-B138.
doi: 10.1149/1.3521316 URL |
[26] |
Chavan S V, Singh R N. Preparation, properties, and reactivity of lanthanum strontium ferrite as an intermediate temperature SOFC cathode[J]. J. Mater. Sci., 2013, 48(19): 6597-6604.
doi: 10.1007/s10853-013-7456-9 URL |
[27] |
Fan H, Zhang Y L, Han M F. Infiltration of La0·6Sr0·4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell[J]. J. Alloys Compd., 2017, 723: 620-626.
doi: 10.1016/j.jallcom.2017.06.018 URL |
[28] |
Guan C Z, Wang Y D, Chen K F, Xiao G P, Lin X, Zhou J, Song S Z, Wang J Q, Zhu Z Y, Zhou X D. Molten salt synthesis of Nb-doped (La, Sr)FeO3 as the oxygen electrode for reversible solid oxide cells[J]. Mater. Lett., 2019, 245: 114-117.
doi: 10.1016/j.matlet.2019.02.116 URL |
[29] |
Cui C S, Wang Y, Tong Y C, Wang S W, Chen C S, Zhan Z L. Syngas production through CH4-assisted co-electrolysis of H2O and CO2 in La0.8Sr0.2Cr0.5Fe0.5O3-δ-Zr0.84Y0.16O2-δ electrode-supported solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2021, 46(39): 20305-20312.
doi: 10.1016/j.ijhydene.2021.03.177 URL |
[30] |
Tian Y F, Zheng H Y, Zhang L L, Chi B, Pu J, Li J. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode[J]. J. Electrochem. Soc., 2018, 165(2): F17-F23.
doi: 10.1149/2.0351802jes URL |
[31] |
Zhang L J, Li Y H, Zhang B Z, Wan Y H, Xu Z Q, Zhang S W, Zhu TL, Xia C R. O3-δ perovskite with in-situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell[J]. Int. J. Energ. Res., 2021, 45(15): 21264-21273.
doi: 10.1002/er.v45.15 URL |
[32] | Peng X Z, Tian Y F, Liu Y, Wang W J, Jia L C, Pu J, Chi B, Li J. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2[J]. J. CO2 Util., 2020, 36: 18-24. |
[33] |
Tian Y F, Wang W J, Liu Y, Zhang L L, Jia L C, Yang J, Chi B, Pu J, Li J. Cobalt-free perovskite oxide La0.6Sr0.4Fe0.8Ni0.2O3-δ as active and robust oxygen electrode for reversible solid oxide cells[J]. ACS Appl. Energy Mater., 2019, 2(5): 3297-3305.
doi: 10.1021/acsaem.9b00115 URL |
[34] |
Zheng Y F, Wang S, Pan Z H, Yin B. Electrochemical CO2 reduction to Co using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode[J]. Energy, 2021, 228: 120579.
doi: 10.1016/j.energy.2021.120579 URL |
[35] |
Berger C, Bucher E, Gspan C, Sitte W. Crystal structure, oxygen nonstoichiometry, and mass and charge transport properties of the Sr-free SOFC/SOEC air electrode material La0.75Ca0.25FeO3-δ[J]. J. Solid State Chem., 2019, 273: 92-100.
doi: 10.1016/j.jssc.2019.02.032 URL |
[36] |
Tian Y F, Zhang L L, Liu Y, Jia L C, Yang J, Chi B, Pu J, Li J. A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells[J]. J. Mater. Chem. A, 2019, 7(11): 6395-6400.
doi: 10.1039/C9TA00643E URL |
[37] |
Tan T, Wang Z M, Qin M X, Zhong W T, Hu J H, Yang C H, Liu M L. In situ exsolution of core-shell structured NiFe/FeOx nanoparticles on Pr0.4Sr1.6(NiFe)1.5Mo0.5O6-δ for CO2electrolysis[J]. Adv. Funct. Mater., 2022, 32(34): 2202878.
doi: 10.1002/adfm.v32.34 URL |
[38] |
Zhang L H, Xu C M, Sun W, Ren R Z, Yang X X, Luo Y Z, Qiao J S, Wang Z H, Zhen S Y, Sun K N. Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis[J]. Sep. Purif. Technol., 2022, 298: 121475.
doi: 10.1016/j.seppur.2022.121475 URL |
[39] |
Simrick N J, Kilner J A, Atkinson A, Rupp J L M, Ryll T M, Bieberle-Hütter A, Galinski H, Gauckler L J. Micro-fabrication of patterned LSCF thin-film cathodes with gold current collectors[J]. Solid State Ionics, 2011, 192(1): 619-626.
doi: 10.1016/j.ssi.2010.03.025 URL |
[40] |
Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics, 2002, 146(1): 1-22.
doi: 10.1016/S0167-2738(01)00997-3 URL |
[41] |
Laguna-Bercero M A, Kilner J A, Skinner S J. Development of oxygen electrodes for reversible solid oxide fuel cells with scandia stabilized zirconia electrolytes[J]. Solid State Ionics, 2011, 192(1): 501-504.
doi: 10.1016/j.ssi.2010.01.003 URL |
[42] |
Lei C, Simpson M F, Virkar A V. Investigation of ion and electron conduction in the mixed ionic-electronic conductor-La-Sr-Co-Fe-oxide (LSCF) using alternating current (ac) and direct current (dc) techniques[J]. J. Electrochem. Soc., 2022, 169(1): 014506.
doi: 10.1149/1945-7111/ac43d8 |
[43] |
Tai L W, Nasrallah M M, Anderson H U, Sparlin D M, Sehlin S R. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3[J]. Solid State Ionics, 1995, 76(3): 273-283.
doi: 10.1016/0167-2738(94)00245-N URL |
[44] |
Ai N, He S, Li N, Zhang Q, Rickard W D A, Chen K F, Zhang T, Jiang S P. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells[J]. J. Power Sources, 2018, 384: 125-135.
doi: 10.1016/j.jpowsour.2018.02.082 URL |
[45] |
Yang Z B, Wang N, Ma C Y, Jin X F, Lei Z, Xiong X Y, Peng S P. Co-electrolysis of H2O-CO2in a solid oxide electrolysis cell with symmetrical La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode[J]. J. Electroanal. Chem., 2019, 836: 107-111.
doi: 10.1016/j.jelechem.2019.01.064 URL |
[46] |
Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, Xiong G X. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane[J]. J. Membr. Sci., 2000, 172(1-2): 177-188.
doi: 10.1016/S0376-7388(00)00337-9 URL |
[47] |
Liang F Y, Jiang H Q, Luo H X, Kriegel R, Caro J. High-purity oxygen production by a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3-δ tube membrane[J]. Catal. Today, 2012, 193(1): 95-100.
doi: 10.1016/j.cattod.2011.12.016 URL |
[48] |
Shiiba H, Bishop C L, Rushton M J D, Nakayama M, Nogami M, Kilner J A, Grimes R W. Effect of a-site cation disorder on oxygen diffusion in perovskite-type Ba0.5Sr0.5Co1-xFexO2.5[J]. J. Mater. Chem. A, 2013, 1(35): 10345-10352.
doi: 10.1039/c3ta10382j URL |
[49] |
Wang L, Merkle R, Maier J. Oxygen reduction kinetics and transport properties of (Ba,Sr)(Co,Fe)O3-δ and related SOFC cathode materials[J]. ECS Trans., 2009, 25(2): 2497-2505.
doi: 10.1149/1.3205805 URL |
[50] |
Yu B, Zhang W Q, Xu J M, Chen J. Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and its application for anode of SOEC[J]. Int. J. Hydrogen Energy, 2008, 33(23): 6873-6877.
doi: 10.1016/j.ijhydene.2008.07.066 URL |
[51] |
Wang H H, Cong Y, Yang W S. Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane reactor[J]. Catal. Today, 2003, 82(1): 157-166.
doi: 10.1016/S0920-5861(03)00228-1 URL |
[52] |
Li M, Hua B, Chen J, Zhong Y M, Luo J L. Charge transfer dynamics in RuO2/perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers[J]. Nano Energy, 2019, 57: 186-194.
doi: 10.1016/j.nanoen.2018.12.048 URL |
[53] |
Prasopchokkul P, Seeharaj P, Kim-Lohsoontorn P. Ba0·5Sr0·5(Co0·8Fe0.2)1-xTaxO3-δ perovskite anode in solid oxide electrolysis cell for hydrogen production from high-temperature steam electrolysis[J]. Int. J. Hydrogen Energy, 2021, 46(10): 7023-7036.
doi: 10.1016/j.ijhydene.2020.11.219 URL |
[54] |
Yang Z B, Jin C, Yang C H, Han M F, Chen F L. Ba0.9Co0.5Fe0.4Nb0.1O3-δ as novel oxygen electrode for solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2011, 36(18): 11572-11577.
doi: 10.1016/j.ijhydene.2011.05.183 URL |
[55] |
He B B, Zhao L, Song S X, Liu T, Chen F L, Xia C R. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells[J]. J. Electrochem. Soc., 2012, 159(5): B619-B626.
doi: 10.1149/2.020206jes URL |
[56] |
Zhang S W, Zhu K, Hu X Y, Peng R R, Xia C R. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6-δ perovskite as a ceramic anode for solid oxide fuel cells[J]. J. Mater. Chem. A, 2021, 9(43): 24336-24347.
doi: 10.1039/D1TA06196H URL |
[57] |
Liu Q, Yang C H, Dong X H, Chen F L. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2010, 35(19): 10039-10044.
doi: 10.1016/j.ijhydene.2010.08.016 URL |
[58] |
Dai N N, Feng J, Wang Z H, Jiang T Z, Sun W, Qiao J S, Sun K N. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x=0, 0.05, 0.1, 0.2, 0.4) as cathodes for sofcs[J]. J. Mater. Chem. A, 2013, 1(45): 14147-14153.
doi: 10.1039/c3ta13607h URL |
[59] |
Yang Y R, Wang Y H, Yang Z B, Chen Y, Peng S P. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells[J]. J. Power Sources, 2020, 478: 229082.
doi: 10.1016/j.jpowsour.2020.229082 URL |
[60] |
Yang Y, Shi N, Xie Y, Li X Y, Hu X Y, Zhu K, Huan D M, Peng R R, Xia C R, Lu Y L. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells[J]. Electrochim. Acta, 2021, 389: 138453.
doi: 10.1016/j.electacta.2021.138453 URL |
[61] |
Wei B, Chen K, Zhao L, Ai N, Lü Z, Jiang S P. SmBaCo2O5+δ as high efficient oxygen electrode of solid oxide electrolysis cells[J]. ECS Trans., 2013, 57(1): 3189-3196.
doi: 10.1149/05701.3189ecst URL |
[62] |
Zheng Y F, Yang H, Pan Z H, Zhang C Z. A Ca and Fe co-doped layered perovskite as stable air electrode in solid oxide electrolyzer cells under high-current electrolysis[J]. Electrochim. Acta, 2017, 251: 581-587.
doi: 10.1016/j.electacta.2017.08.172 URL |
[63] |
Niu B B, Lu C L, Yi W D, Luo S J, Li X N, Zhong X W, Zhao X Z, Xu B M. In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells[J]. Appl. Catal. B, 2020, 270: 118842.
doi: 10.1016/j.apcatb.2020.118842 URL |
[64] |
Jun A, Kim J, Shin J, Kim G. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite[J]. Angew. Chem. Int. Ed., 2016, 55(40): 12512-12515.
doi: 10.1002/anie.201606972 pmid: 27604172 |
[65] |
Tian Y F, Yan D, Chi B, Chen J, Li X, Li J. Preparation and properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ as novel oxygen electrode for solid oxide electrolysis cells[J]. ECS Trans., 2017, 78(1): 533-541.
doi: 10.1149/07801.0533ecst URL |
[66] |
Vibhu V, Flura A, Rougier A, Nicollet C, Fourcade S, Hungria T, Grenier J C, Bassat J M. Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La2-xPrxNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells[J]. J. Energy Chem., 2020, 46: 62-70.
doi: 10.1016/j.jechem.2019.10.012 URL |
[67] |
Chauveau F, Mougin J, Bassat J M, Mauvy F, Grenier J C. A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ[J]. J. Power Sources, 2010, 195(3): 744-749.
doi: 10.1016/j.jpowsour.2009.08.003 URL |
[68] |
Chauveau F, Mougin J, Mauvy F, Bassat J M, Grenier J C. Electrochemical performances of cells containing alternative oxygen electrodes, Ln2NiO4+δ (Ln=Nd, La)[J]. ECS Trans., 2009, 25(2): 2557-2564.
doi: 10.1149/1.3205812 URL |
[69] |
Kim S J, Kim K J, Dayaghi A M, Choi G M. Polarization and stability of La2NiO4+δ in comparison with La0.6Sr0.4Co0.2Fe0.8O3-δ as air electrode of solid oxide electrolysis cell[J]. Int. J. Hydrogen Energy, 2016, 41(33): 14498-14506.
doi: 10.1016/j.ijhydene.2016.05.284 URL |
[70] |
Vibhu V, Vinke I C, Eichel R A, Bassat J M, de Haart L G J. La2Ni1-xCoO4+δ (x=0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells[J]. J. Power Sources, 2019, 444: 227292.
doi: 10.1016/j.jpowsour.2019.227292 URL |
[71] |
Laguna-Bercero M A, Kinadjan N, Sayers R, El Shinawi H, Greaves C, Skinner S J. Performance of La2-xSrxCo0.5Ni0.5O4±δ as an oxygen electrode for solid oxide reversible cells[J]. Fuel Cells, 2011, 11(1): 102-107.
doi: 10.1002/fuce.201000067 URL |
[72] |
Ogier T, Mauvy F, Bassat J M, Laurencin J, Mougin J, Grenier J C. Overstoichiometric oxides Ln2NiO4+δ (Ln=La, Pr or Nd) as oxygen anodic electrodes for solid oxide electrolysis application[J]. Int. J. Hydrogen Energy, 2015, 40(46): 15885-15892.
doi: 10.1016/j.ijhydene.2015.09.107 URL |
[73] |
Vibhu V, Vinke I C, Eichel R A, de Haart L G J. Cobalt substituted Pr2Ni1-xCoO4+δ (x=0, 0.1, 0.2) oxygen electrodes: Impact on electrochemical performance and durability of solid oxide electrolysis cells[J]. J. Power Sources, 2021, 482: 228909.
doi: 10.1016/j.jpowsour.2020.228909 URL |
[74] |
Huan D M, Zhang L, Zhang S W, Shi N, Li X Y, Zhu K, Xia C R, Peng R R, Lu Y L. Ruddlesden-popper oxide SrEu2Fe2O7 as a promising symmetrical electrode for pure CO2 electrolysis[J]. J. Mater. Chem. A, 2021, 9(5): 2706-2713.
doi: 10.1039/D0TA09585K URL |
[75] |
Zheng Y F, Jiang H G, Wang S, Qian B, Li Q S, Ge L, Chen H. Mn-doped ruddlesden-popper oxide La1.5Sr0.5NiO4+δ as a novel air electrode material for solid oxide electrolysis cells[J]. Ceram. Int., 2021, 47(1): 1208-1217.
doi: 10.1016/j.ceramint.2020.08.239 URL |
[76] |
Liu S M, Zhang W Q, Li Y F, Yu B. ReBaCO2O5+δ (Re = Pr, Nd, and Gd) as promising oxygen electrodes for intermediate-temperature solid oxide electrolysis cells[J]. RSC Advances, 2017, 7(27): 16332-16340.
doi: 10.1039/C6RA28005F URL |
[77] |
Zhou Q J, He T M, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells[J]. J. Power Sources, 2008, 185(2): 754-758.
doi: 10.1016/j.jpowsour.2008.07.064 URL |
[78] |
Sun C Z, Kong Y, Shao L, Zhang Q, Wu X, Zhang N Q, Sun K N. Significant zirconium substitution effect on the oxygen reduction activity of the cathode material NdBaCo2O5+δ for solid oxide fuel cells[J]. ACS Sustain. Chem. Eng., 2019, 7(13): 11603-11611.
doi: 10.1021/acssuschemeng.9b01486 URL |
[79] |
Du Z H, Li K Y, Zhao H L, Dong X, Zhang Y, Świerczek K. A SmBaCo2O5+δ double perovskite with epitaxially grown Sm0.2Ce0.8O2-δ nanoparticles as a promising cathode for solid oxide fuel cells[J]. J. Mater. Chem. A, 2020, 8(28): 14162-14170.
doi: 10.1039/D0TA05602B URL |
[80] |
Zhang L L, Tian Y F, Liu Y T, Jia L C, Yang J, Chi B, Pu J, Li J. Direct electrolysis of CO2 in a symmetrical solid oxide electrolysis cell with spinel MnCo2O4 as electrode[J]. Chemelectrochem, 2019, 6(5): 1359-1364.
doi: 10.1002/celc.v6.5 URL |
[81] |
Duan N Q, Gao M R, Hua B, Li M, Chi B, Li J, Luo J L. Exploring Ni(Mn1/3Cr2/3)2O4 spinel-based electrodes for solid oxide cells[J]. J. Mater. Chem. A, 2020, 8(7): 3988-3998.
doi: 10.1039/C9TA11878K URL |
[82] |
Kim D, Thaheem I, Yu H, Park J H, Lee K T. Highly promoted electrocatalytic activity of spinel CoFe2O4 by combining with Er0.4Bi1.6O3 as a bifunctional oxygen electrode for reversible solid oxide cells[J]. J. Mater. Chem. A, 2022, 10(4): 2045-2054.
doi: 10.1039/D1TA07494F URL |
[83] |
Zhao Q, Yan Z H, Chen C C, Chen J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chem. Rev., 2017, 117(15): 10121-10211.
doi: 10.1021/acs.chemrev.7b00051 pmid: 28745484 |
[84] |
Yang C H, Jin C, Coffin A, Chen F L. Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2010, 35(11): 5187-5193.
doi: 10.1016/j.ijhydene.2010.03.049 URL |
[85] | Song Y F, Zhang X M, Zhou Y J, Jiang Q K, Guan F, Lv H F, Wang G X, Bao X H. Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer[J]. Energy Stor. Mater., 2018, 13: 207-214. |
[86] |
Zhang S L, Wang H Q, Lu M Y, Li C X, Li C J, Barnett S A. Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3-Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-temperature solid oxide electrochemical cells[J]. J. Power Sources, 2019, 426: 233-241.
doi: 10.1016/j.jpowsour.2019.04.044 URL |
[87] |
Yun B H, Kim K J, Joh D W, Chae M S, Lee J J, Kim D W, Kang S, Choi D, Hong S T, Lee K T. Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures[J]. J. Mater. Chem. A, 2019, 7(36): 20558-20566.
doi: 10.1039/C9TA09203J URL |
[88] |
Li T P, Wang T P, Wei T, Hu X, Ye Z M, Wang Z, Dong D H, Chen B, Wang H T, Shao Z P. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities[J]. Small, 2021, 17(6): 2007211.
doi: 10.1002/smll.v17.6 URL |
[89] |
Wang Y, Xu J H, Meng X Y, Liu T, Chen F L. Ni infiltrated Sr2Fe1.5Mo0.5O6-δ-Ce0.8Sm0.2O1.9 electrode for methane assisted steam electrolysis process[J]. Electrochem. Commun., 2017, 79: 63-67.
doi: 10.1016/j.elecom.2017.04.018 URL |
[90] |
Liu T, Liu H, Zhang X Y, Lei L, Zhang Y X, Yuan Z H, Chen F L, Wang Y. A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam[J]. J. Mater. Chem. A, 2019, 7(22): 13550-13558.
doi: 10.1039/C9TA00467J URL |
[91] |
Chen K F, Ai N, Jiang S P. Performance and stability of (La,Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions[J]. Int. J. Hydrogen Energy, 2012, 37(14): 10517-10525.
doi: 10.1016/j.ijhydene.2012.04.073 URL |
[92] |
Liu Y, Tian Y F, Wang W J, Li Y T, Chattopadhyay S, Chi B, Pu J. Promoting electrocatalytic activity and stability via Er0.4Bi1.6O3-δ in situ decorated La0.8Sr0.2MnO3-δ oxygen electrode in reversible solid oxide cell[J]. ACS Appl. Mater. Interfaces., 2020, 12(52): 57941-57949.
doi: 10.1021/acsami.0c18583 URL |
[93] |
Chen K F, Ai N, Jiang S P. Development of (Gd,Ce)O2-impregnated (La,Sr)MnO3 anodes of high temperature solid oxide electrolysis cells[J]. J. Electrochem. Soc., 2010, 157(11): P89-P94.
doi: 10.1149/1.3481436 URL |
[94] |
Gondolini A, Mercadelli E, Sanson A. Single step anode-supported solid oxide electrolyzer cell[J]. J. Eur. Ceram. Soc., 2015, 35(16): 4617-4621.
doi: 10.1016/j.jeurceramsoc.2015.08.031 URL |
[95] |
Chen K F, Ai N, Jiang S P. Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration[J]. Int. J. Hydrogen Energy, 2012, 37(2): 1301-1310.
doi: 10.1016/j.ijhydene.2011.10.015 URL |
[96] |
Tan Y, Gao S, Xiong C Y, Chi B. Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells[J]. Int. J. Hydrogen Energy, 2020, 45(38): 19823-19830.
doi: 10.1016/j.ijhydene.2020.05.116 URL |
[97] |
Men H J, Tian N, Qu Y M, Wang M, Zhao S, Yu J. Improved performance of a lanthanum strontium manganite-based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement[J]. Ceram. Int., 2019, 45(6): 7945-7949.
doi: 10.1016/j.ceramint.2019.01.107 URL |
[98] |
Khoshkalam M, Tripković Ð, Tong X F, Faghihi-Sani M A, Chen M, Hendriksen P V. Improving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3-δ via Pr2Ni1-xCuxO4+δ surface decoration[J]. J. Power Sources, 2020, 457: 228035.
doi: 10.1016/j.jpowsour.2020.228035 URL |
[99] |
Sar J, Charlot F, Almeida A, Dessemond L, Djurado E. Coral microstructure of graded CGO/LSCF oxygen electrode by electrostatic spray deposition for energy (IT-SOFC, SOEC)[J]. Fuel Cells, 2014, 14(3): 357-363.
doi: 10.1002/fuce.201300146 URL |
[100] | Cao J W, Li Y F, Zheng Y, Wang S B, Zhang W Q, Qin X F, Geng G, Yu B. A novel solid oxide electrolysis cell with mmicro-/nano channel anode for electrolysis at ultra-high current density over 5 A cm-2[J]. Adv. Energy Mater., 2022: 2200899. |
[1] | 汪恒吉, 陈文国, 全周益, 赵凯, 孙毅飞, 陈旻, 奥坚科·弗拉基米尔. 多孔陶瓷支撑型管式固体氧化物电解池性能研究[J]. 电化学(中英文), 2023, 29(12): 2204131-. |
[2] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
[3] | 叶灵婷, 谢奎. 氧离子传导型固体氧化物电解池燃料电极的研究进展[J]. 电化学(中英文), 2020, 26(2): 253-261. |
[4] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
[5] | 吴林, 吕艳卓, 曹雪, 王贵领, 曹殿学, . Mg-Li电极在NaCl溶液中的电化学行为[J]. 电化学(中英文), 2009, 15(2): 198-201. |
[6] | 王雅东, 光先勇, 王智鑫, 艾新平, 杨汉西, . 中性水溶液高容量TiB_2负极的电氧化反应[J]. 电化学(中英文), 2009, 15(1): 30-33. |
[7] | 蔡敏真, 宋杰, 吴启辉, 郑明森, 吴孙桃, 董全峰, . 溅射功率对氧化锡薄膜结构和电化学性能的影响[J]. 电化学(中英文), 2008, 14(1): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||