电化学(中英文) ›› 2023, Vol. 29 ›› Issue (2): 2215007. doi: 10.13208/j.electrochem.2215007
所属专题: “电催化和燃料电池”专题文章
孟庆成a, 金林薄a, 马梦泽a, 高学庆b, 陈爱兵b,*(), 周道金a,*(), 孙晓明a,*()
收稿日期:
2022-06-28
修回日期:
2022-07-19
接受日期:
2022-09-20
出版日期:
2023-02-28
发布日期:
2022-09-26
Qing-Cheng Menga, Lin-Bo Jina, Meng-Ze Maa, Xue-Qing Gaob, Ai-Bing Chenb,*(), Dao-Jin Zhoua,*(), Xiao-Ming Suna,*()
Received:
2022-06-28
Revised:
2022-07-19
Accepted:
2022-09-20
Published:
2023-02-28
Online:
2022-09-26
Contact:
*Ai-Bing Chen, Tel: (86-311)88668375, E-mail address: About author:
First author contact:#These authors contribute equally to this work.
摘要:
高活性和耐用性的甲醇氧化电催化剂对于直接甲醇燃料电池的商业可行性至关重要,然而,目前的甲醇氧化电催化剂与预期相去甚远,存在贵金属用量过多、活性平庸、衰减快等问题。在这里,我们报告了锚定在镍铁层状金属氢氧化物(NiFe-LDHs)表面Pt纳米颗粒复合材料,用于在碱性介质中稳定电催化甲醇氧化。基于Pt纳米颗粒的高固有甲醇氧化活性,与商业Pt/C催化剂相比,基底材料NiFe-LDHs在200,000 s循环测试后进一步增强了Pt的抗中毒能力和稳定性。NiFe-LDHs层板上单原子分散的Fe作为锚定位点将Pt纳米颗粒均匀分散在其表面,进一步充分利用了层状金属氢氧化物表面丰富的OH基团,促进邻近Pt位点上毒化中间体的氧化去除。这项工作突出了NiFe-LDH在提高甲醇氧化反应整体效率方面的特殊性,为其他甲醇氧化电催化的设计和应用提供了指导。
孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007.
Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun. Highly Dispersed Pt Nanoparticles Root in Single-Atom Fe Sites in LDHs toward Efficient Methanol Oxidation[J]. Journal of Electrochemistry, 2023, 29(2): 2215007.
[1] |
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation[J]. Adv. Funct. Mater., 2013, 23(28): 3513-3518.
doi: 10.1002/adfm.v23.28 URL |
[2] |
Xu C W, Wang H, Shen P K, Jiang S P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells[J]. Adv. Mater., 2007, 19(23): 4256-4259.
doi: 10.1002/(ISSN)1521-4095 URL |
[3] |
Arico A.S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2): 133-161.
doi: 10.1002/(ISSN)1615-6854 URL |
[4] |
Zhao X, Yin M, Ma L, Liang L, Liu C P, Liao J H, Lu T H, Xing W. Recent advances in catalysts for direct methanol fuel cells[J]. Energy Environ. Sci., 2011, 4(8): 2736-2753.
doi: 10.1039/c1ee01307f URL |
[5] |
Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. J. Electroanal. Chem., 1999, 461(1-2): 14-31.
doi: 10.1016/S0022-0728(98)00197-1 URL |
[6] |
Yang C C, Chiu S.J, Chien W.C. Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes[J]. J. Power Sources., 2006, 162(1): 21-29.
doi: 10.1016/j.jpowsour.2006.06.065 URL |
[7] |
Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D.G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions[J]. Chem. Sci., 2015, 6(11): 6624-6631.
doi: 10.1039/c5sc02417j pmid: 29435211 |
[8] |
Yu E.H, Scott K, Reeve R.W. A study of the anodic oxidation of methanol on Pt in alkaline solutions[J]. J. Electroanal. Chem., 2003, 547(1): 17-24.
doi: 10.1016/S0022-0728(03)00172-4 URL |
[9] |
Qi L, Yin Y, Shi W Y, Liu J G, Xing D M, Liu F Q, Hou Z J, Gu J, Ming P W, Zou Z G. Intermittent microwave synthesis of nanostructured Pt/TiN-graphene with high catalytic activity for methanol oxidation[J]. Int. J. Hydrog. Energy., 2014, 39(28): 16036-16042.
doi: 10.1016/j.ijhydene.2013.12.081 URL |
[10] |
Yang J, Hübner R, Zhang J W, Wan H, Zheng Y Y, Wang H L, Qi H Y, He L Q, Li Y, Dubale A.A, Sun Y J, Liu Y T, Peng D L, Meng Y Z, Zheng Z K, Rossmeisl J, Liu W. A robust PtNi nano frame/N-doped graphene aerogel electrocatalyst with both high activity and stability[J]. Angew. Chem., Int. Ed., 2021, 60(17): 9590-9597.
doi: 10.1002/anie.v60.17 URL |
[11] |
Huang W J, Wang H T, Zhou J G, Wang J, Duchesne P.N, Muir D, Zhang P, Han N, Zhao F P, Zeng M, Zhong J, Jin C H, Li Y G, Lee S.T, Dai H J. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene[J]. Nat. Commun., 2015, 6: 10035.
doi: 10.1038/ncomms10035 pmid: 26602295 |
[12] |
Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin E.S, Mallouk T E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts[J]. Science, 1998, 280(5370): 1735-1737.
pmid: 9624047 |
[13] |
Tso C P, Zhung C M, Shih Y H, Tseng Y M, Wu S C, Doong R A. Stability of metal oxide nanoparticles in aqueous solutions[J]. Water Sci. Technol., 2010, 61(1): 127-133.
doi: 10.2166/wst.2010.787 URL |
[14] |
Li L, Hu L P, Li J, Wei Z D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells[J]. Nano Res., 2015, 8(2): 418-440.
doi: 10.1007/s12274-014-0695-5 URL |
[15] |
Kakati N, Maiti J, Lee S H, Jee S H, Viswanathan B, Yoon Y S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru?[J]. Chem. Rev., 2014, 114(24): 12397-12429.
doi: 10.1021/cr400389f pmid: 25537109 |
[16] |
Xiong L K, Sun Z T, Zhang X, Zhao L. Huang P, Chen X W, Jin H D, Sun H, Lian Y B, Deng Z, Rümmerli M H, Yin W J, Zhang D, Wang S, Peng Y. Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a co-promoting effect[J]. Nat. Commun., 2019, 10: 3782.
doi: 10.1038/s41467-019-11766-w pmid: 31439841 |
[17] |
Zhang Z Q, Liu J P, Wang J, Wang Q, Wang Y H, Wang K, Wang Z, Gu M, Tang Z H, Lim J, Zhao T S, Ciucci F. Single-atom catalyst for high-performance methanol oxidation[J]. Nat. Commun., 2021, 12(1): 5235.
doi: 10.1038/s41467-021-25562-y pmid: 34475400 |
[18] |
Teng X A, Shan A X, Zhu Y C, Wang R M, Lau W M. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochim. Acta, 2020, 353: 136542.
doi: 10.1016/j.electacta.2020.136542 URL |
[19] |
Meng Y, Wang H L, Dai Y H, Zheng J W, Yu H, Zhou C M, Yang Y H. Modulating the electronic property of Pt nanocatalyst on rGo by iron oxides for aerobic oxidation of glycerol[J]. Catal. Commun., 2020, 144: 106073.
doi: 10.1016/j.catcom.2020.106073 URL |
[20] |
Chen A C, Holt-hindle P. Platinum-based nanostructured materials: Synthesis, properties, and applications[J]. Chem. Rev., 2010, 110(6): 3767-3804.
doi: 10.1021/cr9003902 pmid: 20170127 |
[21] |
Guo C X, Zhang L Y, Miao J W, Zhang J T, Li C M. DNA-functionalized graphene to guide growth of highly active Pd nanocrystals as efficient electrocatalyst for direct formic acid fuel cells[J]. Adv. Energy Mater., 2013, 3(2): 167-171.
doi: 10.1002/aenm.v3.2 URL |
[22] |
Wang Z H, Xie W F, Zhang F F, Xia J F, Gong S D, Xia Y Z. Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution[J]. Electrochim. Acta, 2016, 192: 400-406.
doi: 10.1016/j.electacta.2016.02.007 URL |
[23] |
Li Y J, Sun Y J, Qin Y N, Zhang W Y, Wang L, Luo M C, Yang H, Guo S J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials[J]. Adv. Energy Mater., 2020, 10(11): 1903120.
doi: 10.1002/aenm.v10.11 URL |
[24] |
Yuan X L, Jiang B, Cao M H, Zhang C Y, Liu X Z, Zhang Q H, Lyu F.L, Gu L, Zhang Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction[J]. Nano Res., 2020, 13(1): 265-272.
doi: 10.1007/s12274-019-2609-z |
[25] |
Zhang K F, Wang H F, Qiu J, Wu J A, Wang H J, Shao J W, Deng Y Q, Yan L F. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance[J]. Chem. Eng. J., 2021, 421: 127786.
doi: 10.1016/j.cej.2020.127786 URL |
[26] |
Sideris P J, Nielsen U G, Gan Z H, Grey C P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy[J]. Science, 2008, 321(5885): 113-117.
doi: 10.1126/science.1157581 pmid: 18599785 |
[27] |
Zhou D J, Li P S, Lin X, McKinley A, Kuang Y, Liu W, Lin W F, Sun X M, Duan X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly[J]. Chem. Soc. Rev., 2021, 50(15): 8790-8817.
doi: 10.1039/D1CS00186H URL |
[28] |
Zhou D J, Wang S Y, Jia Y, Xiong X Y, Yang H B, Liu S, Tang J L, Zhang J M, Liu D, Zheng L R, Kuang Y, Sun X M, Liu B. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis[J]. Angew. Chem. Int. Ed., 2019, 58(3): 736-740.
doi: 10.1002/anie.201809689 pmid: 30461141 |
[29] |
Li P S, Wang M Y, Duan X X, Zheng L R, Cheng X P, Zhang Y F, Kuang Y, Li Y P, Ma Q, Feng Z X, Liu W, Sun X M. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides[J]. Nat. Commun., 2019, 10: 1711.
doi: 10.1038/s41467-019-09666-0 pmid: 30979899 |
[30] |
Zhou D J, Xiong X Y, Cai Z, Han N N, Jia Y, Xie Q XD, Duan X X, Xie T H, Zheng X L, Sun X M, Duan X. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity[J]. Small Methods, 2018, 2(7): 1800083.
doi: 10.1002/smtd.v2.7 URL |
[31] |
Feng H P, Yu J F, Tang L, Wang J J, Dong H R, Ni T, Tang J, Tang W W, Zhu X, Liang C. Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure[J]. Appl. Catal. B., 2021, 297: 120478.
doi: 10.1016/j.apcatb.2021.120478 URL |
[32] |
Han Y C, Li P F, Liu J, Wu S L, Ye Y X, Tian Z F, Liang C H. Strong Fe3+-O(h)-Pt interfacial interaction induced excellent stability of Pt/NiFe-LDH/rGO electrocatalysts[J]. Sci. Rep., 2018, 8: 1359.
doi: 10.1038/s41598-018-19876-z |
[33] |
Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K.M, Zhang B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876-3879.
doi: 10.1021/jacs.8b00752 pmid: 29518310 |
[34] |
Zhu H Y, Gu C D, Ge X, Tu J P. Targeted growth of Pt on 2D atomic layers of Ni-Al hydroxide: Assembly of the Pt/exfoliated Ni-Al hydroxide sheet/graphene composite as electrocatalysts for methanol oxidation reactions[J]. Electrochim. Acta, 2016, 222: 938-945.
doi: 10.1016/j.electacta.2016.11.061 URL |
[35] |
Ishikawa Y, Liao M S, Cabrera C R. Energetics of H2O dissociation and COads+OHads reaction on a series of Pt-M mixed metal clusters: A relativistic density-functional study[J]. Surf Sci., 2002, 513(1): 98-110.
doi: 10.1016/S0039-6028(02)01697-7 URL |
[36] |
Fan G L, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chem. Soc. Rev., 2014, 43(20): 7040-7066.
doi: 10.1039/c4cs00160e pmid: 25001024 |
[37] |
Li P S, Duan X X, Kuang Y, Li Y P, Zhang G X, Liu W, Sun X M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation[J]. Adv. Energy Mater., 2018, 8(15): 1703341.
doi: 10.1002/aenm.v8.15 URL |
[38] |
Xie F, Ma L, Gan M Y, He H M, Hu L Q, Jiang M H, Zhang H H. One-pot construction of the carbon spheres embellished by layered double hydroxide with abundant hydroxyl groups for Pt-based catalyst support in methanol electrooxidation[J]. J. Power Sources, 2019, 420: 73-81.
doi: 10.1016/j.jpowsour.2019.02.088 URL |
[39] |
Lin Y H, Cui X L, Yen C, Wai C M. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells[J]. J. Phys. Chem. B., 2005, 109(30): 14410-14415
doi: 10.1021/jp0514675 URL |
[40] |
Tao L, Shi Y L, Huang Y C, Chen R, Zhang Y Q, Huo J, Zou Y Q, Yu G, Luo J, Dong C L, Wang S Y. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation[J]. Nano Energy, 2018, 53: 604-612.
doi: 10.1016/j.nanoen.2018.09.013 URL |
[41] |
Huang L, Zhang X P, Wang Q Q, Han Y J, Fang Y X, Dong S J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. J. Am. Chem. Soc., 2018, 140(3): 1142-1147.
doi: 10.1021/jacs.7b12353 pmid: 29283565 |
[42] |
Tian H, Yu Y H, Wang Q, Li J, Rao P, Li R S, Du Y L, Jia C M, Luo J M, Deng P L, Shen Y J, Tian X L. Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction[J]. Int. J. Hydrog. Energy, 2021, 46(61): 31202-31215.
doi: 10.1016/j.ijhydene.2021.07.006 URL |
[43] |
Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y, Yang N J. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951.
doi: 10.1002/smll.v15.38 URL |
[44] |
Zhou D J, Cai Z, Bi Y M, Tian W L, Luo M, Zhang Q, Xie Q X, Wang J D, Li Y P, Kuang Y, Duan X, Bajdich M, Siahrostami S, Sun X M. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets[J]. Nano Res., 2018, 11(3): 1358-1368.
doi: 10.1007/s12274-017-1750-9 |
[45] |
Cai Z, Zhou D J, Wang M Y, Bak S M, Wu Y S, Wu Z S, Tian Y, Xiong X Y, Li Y P, Liu W, Siahrostami S, Kuang Y, Yang X Q, Duan H H, Feng Z X, Wang H L, Sun X M. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity[J]. Angew. Chem., Int. Ed., 2018, 57(30): 9392-9396.
doi: 10.1002/anie.v57.30 URL |
[46] |
van Drunen J, Pilapil B.K, Makonnen Y, Beauchemin D, Gates B D, Jerkiewicz G. Electrochemically active nickel foams as support materials for nanoscopic platinum electrocatalysts[J]. ACS Appl. Mater. Inter., 2014, 6(15): 12046-12061.
doi: 10.1021/am501097t URL |
[1] | 李萌, 冯立纲. 磷化物助力铂基催化剂甲醇电氧化的研究进展[J]. 电化学(中英文), 2022, 28(1): 2106211-. |
[2] | 唐佳, 张晓明, 于陕升, 王素力, 孙公权. PtxCuy/C电催化剂甲醇氧化反应性能及机理研究[J]. 电化学(中英文), 2021, 27(5): 508-517. |
[3] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[4] | 秦雪苹, 朱尚乾, 张露露, 孙书会, 邵敏华. 酸性和碱性溶液中金属氮碳材料氧还原和氢析出反应的理论研究[J]. 电化学(中英文), 2021, 27(2): 185-194. |
[5] | 郑玉梅,尹振,王虹,李建新. Co3O4/Ti电催化膜电极制备及其苯甲醇催化氧化性能[J]. 电化学(中英文), 2018, 24(2): 122-128. |
[6] | 郎小玲, 江叶坤, 施梅勤, 康凌之, 马淳安. 嵌段共聚物模板法一步制备WC/C基底电极材料[J]. 电化学(中英文), 2015, 21(4): 336-343. |
[7] | 戚利,殷瑛,涂文广,吴兵兵,王兆生,刘建国*,顾军,邹志刚. Pt-TiO2/Graphene催化剂的氧还原和甲醇氧化电催化性能研究[J]. 电化学(中英文), 2014, 20(4): 377-381. |
[8] | 陆君涛, 肖丽, 王得丽, 孙玉宝, 索艳格, 庄林. “性质-活性关系”对催化剂研究的方法论意义[J]. 电化学(中英文), 2012, 18(3): 215-222. |
[9] | 张玲, 郑龙珍, . 多层聚吡咯-铂复合膜电极的甲醇电催化氧化[J]. 电化学(中英文), 2011, 17(1): 84-87. |
[10] | 牛凤娟, 易清风, . 纳米钯催化剂对甲醇的电催化氧化[J]. 电化学(中英文), 2011, 17(1): 67-72. |
[11] | Robert M.Amussen, Peter Holt-Hindle, Samantha Nigro, . 纳米多孔Pt,PtRu及PtRuIr催化剂的电化学FTIR光谱之比较(英文)[J]. 电化学(中英文), 2010, 16(3): 263-272. |
[12] | 李莉, 陈四国, 齐学强, 王耀琼, 季孟波, 李兰兰, 魏子栋, . 质子交换膜燃料电池中的电化学催化[J]. 电化学(中英文), 2009, 15(4): 403-411. |
[13] | 符颖, 魏子栋, 冯永超, 马兴立, 廖明佳, 廖超, 张捷, 张环, . CeO_2/Pt复合电极及其电催化特性[J]. 电化学(中英文), 2008, 14(4): 407-410. |
[14] | 游梦迪;程璇;刘连;张璐;. DM FC中甲醇渗透的电化学研究(英文)[J]. 电化学(中英文), 2006, 12(2): 148-153. |
[15] | 王青,周益明,邵阳,季益刚,许娟,唐亚文,陆天虹,沈涛. 固相反应法合成Pt/MoO_3及其电催化作用[J]. 电化学(中英文), 2004, 10(3): 320-323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||