[1] |
Rahman M Z, Kibria M G, Mullins C B. Metal-free photocatalysts for hydrogen evolution[J]. Chem. Soc. Rev., 2020, 49(6): 1887-1931.
doi: 10.1039/c9cs00313d
pmid: 32101197
|
[2] |
Li Z S, Li B L, Peng S H, Li D H, Yang S Y, Fang Y P. Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange[J]. RSC Adv., 2014, 4(66): 35144-35148.
doi: 10.1039/C4RA05749J
URL
|
[3] |
Navarro R M, Pena M A, Fierro J L G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass[J]. Chem. Rev., 2007, 107(10): 3952-3991.
pmid: 17715983
|
[4] |
Li X M, Hao X G, Abudula A, Guan G Q. Nanostructured catalysts for electrochemical water splitting: current state and prospects[J]. J. Mater. Chem., 2016, 4(31): 11973-12000.
|
[5] |
He L Q, Zhang W B, Mo Q J, Huang W J, Yang L C, Gao Q S. Molybdenum carbide-oxide heterostructures: In situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., 2020, 59(9): 3544-3548.
doi: 10.1002/anie.v59.9
URL
|
[6] |
Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.
doi: 10.1021/acs.chemrev.9b00248
pmid: 31657904
|
[7] |
Mallouk T E. Water electrolysis: Divide and conquer[J]. Nat. Chem., 2013, 5(5): 362-363.
doi: 10.1038/nchem.1634
pmid: 23609082
|
[8] |
Li X R, Wang C L, Xue H G, Pang H, Xu Q. Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction[J]. Coord. Chem. Rev., 2020, 422: 213468.
doi: 10.1016/j.ccr.2020.213468
URL
|
[9] |
Xu Q C, Jiang H, Duan X Z, Jiang Z, Hu Y J, Boettcher S W, Zhang W Y, Guo S J, Li C Z. Fluorination-enabled reconstruction of nife electrocatalysts for efficient water oxidation[J]. Nano Lett., 2021, 21(1): 492-499.
doi: 10.1021/acs.nanolett.0c03950
pmid: 33258608
|
[10] |
Cao S S, Qi J D, Lei F C, Wei Z M, Lou S S, Yang X Y, Guo Y Q, Hao P, Xie J F, Tang B. Reduction-induced surface reconstruction to fabricate cobalt hydroxide/molybdenum oxide hybrid nanosheets for promoted oxygen evolution reaction[J]. Chem. Eng. J., 2021, 413: 127540.
doi: 10.1016/j.cej.2020.127540
URL
|
[11] |
Lu S L, Zhao B, Chen M X, Wang L, Fu X Z, Luo J L. Electrolysis of waste water containing aniline to produce polyaniline and hydrogen with low energy consumption[J]. Int. J. Hydrogen Energy, 2020, 45(43): 22419-22426.
doi: 10.1016/j.ijhydene.2020.06.116
URL
|
[12] |
Ding Y, Xue Q, Hong Q L, Li F M, Jiang Y C, Li S N, Chen Y. Hydrogen and potassium acetate Co-production from electrochemical reforming of ethanol at ultrathin cobalt sulfide nanosheets on nickel foam[J]. ACS Appl. Mater. Interfaces, 2021, 13(3): 4026-4033.
doi: 10.1021/acsami.0c20554
URL
|
[13] |
Sun F C, Zhou Y, You Z H, Xia H H, Tuo Y X, Wang S T, Jia C P, Zhang J. Bi-functional Fe3O4/Au/CoFe-LDH sandwich-structured electrocatalyst for asymmetrical electrolyzer with low operation voltage[J]. Small, 2021: e2103307.
|
[14] |
Duan Y J, Liu Z L, Zhao B, Liu J H. Raspberry-like Pd3Pb alloy nanoparticles: Superior electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. RSC Adv., 2020, 10(27): 15769-15774.
doi: 10.1039/D0RA00564A
URL
|
[15] |
Zheng D D, Li J W, Ci S Q, Cai P W, Ding Y C, Zhang M T, Wen Z H. Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen[J]. Appl. Catal., B, 2020, 277: 119178.
doi: 10.1016/j.apcatb.2020.119178
URL
|
[16] |
Kim H J, Kim Y, Lee D E, Kim J R, Chae H J, Jeong S Y, Kim B S, Lee J, Huber G W, Byun J, Kim S, Han J. Coproducing value-added chemicals and hydrogen with electrocatalytic glycerol oxidation technology: Experimental and techno-economic investigations[J]. ACS Sustain. Chem. Eng., 2017, 5(8): 6626-6634.
doi: 10.1021/acssuschemeng.7b00868
URL
|
[17] |
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. From glycerol to value-added products[J]. Angew. Chem. Int. Ed., 2007, 46(24): 4434-4440.
doi: 10.1002/(ISSN)1521-3773
URL
|
[18] |
Park Y J, Yang J W. Glycerol conversion to high-value chemicals: The implication of unnatural α-amino acid syntheses using natural resources[J]. Green Chem., 2019, 21(10): 2615-2620.
doi: 10.1039/c9gc00755e
|
[19] |
Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5: 4036.
doi: 10.1038/ncomms5036
pmid: 24892771
|
[20] |
Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New important derivatives of glycerol[J]. Green Chem., 2008, 10(1): 13-30.
doi: 10.1039/B710561D
URL
|
[21] |
Anitha M, Kamarudin S K, Kofli N T. The potential of glycerol as a value-added commodity[J]. Chem. Eng. J., 2016, 295: 119-130.
doi: 10.1016/j.cej.2016.03.012
URL
|
[22] |
Dodekatos G, Schünemann S, Tüysüz H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018, 8(7): 6301-6333.
doi: 10.1021/acscatal.8b01317
URL
|
[23] |
Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited[J]. Green Chem., 2010, 12(4): 539-554.
doi: 10.1039/b922014c
URL
|
[24] |
Fan L F, Liu B W, Liu X, Senthilkumar N, Wang G X, Wen Z H. Recent progress in electrocatalytic glycerol oxidation[J]. Energy Technol., 2020, 9(2): 2000804.
doi: 10.1002/ente.v9.2
URL
|
[25] |
Huang L, Sun J Y, Cao S H, Zhan M, Ni Z R, Sun H J, Chen Z, Zhou Z Y, Sorte E G, Tong Y Y J, Sun S G. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C[J]. ACS Catal., 2016, 6(11): 7686-7695.
doi: 10.1021/acscatal.6b02097
URL
|
[26] |
Liu Y F, Yu W J, Raciti D, Gracias D H, Wang C. Electrocatalytic oxidation of glycerol on platinum[J]. J. Phys. Chem. C, 2018, 123(1): 426-432.
doi: 10.1021/acs.jpcc.8b08547
URL
|
[27] |
Lee S, Kim H J, Lim E J, Kim Y, Noh Y, Huber G W, Kim W B. Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process[J]. Green Chem., 2016, 18(9): 2877-2887.
doi: 10.1039/C5GC02865E
URL
|
[28] |
Tang S S, Li X G, Courté M, Peng J J, Fichou D. Hierarchical Cu(OH)2@Co(OH)2Nanotrees for water oxidation electrolysis[J]. ChemCatChem, 2020, 12(16): 4038-4043.
doi: 10.1002/cctc.v12.16
URL
|
[29] |
Lv J J, Wang L M, Li R S, Zhang K Y, Zhao D F, Li Y Q, Li X J, Huang X B, Wang G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction[J]. ACS Catal., 2021, 11(23): 14338-14351.
doi: 10.1021/acscatal.1c03960
URL
|
[30] |
Kou Y, Liu J, Li Y B, Qu S X, Ma C, Song Z S, Han X P, Deng Y D, Hu W B, Zhong C. Electrochemical oxidation of chlorine-doped Co(OH)2 nanosheet arrays on carbon cloth as a bifunctional oxygen electrode[J]. ACS Appl. Mater. Interfaces, 2018, 10(1): 796-805.
doi: 10.1021/acsami.7b17002
URL
|
[31] |
Ray C, Lee S C, Jin B J, Kundu A, Park J H, Jun S C. Conceptual design of three-dimensional CoN/Ni3N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts[J]. J. Mater. Chem. A, 2018, 6(10): 4466-4476.
doi: 10.1039/C7TA10933D
URL
|
[32] |
Fan L F, Ji Y X, Wang G X, Chen J X, Chen K, Liu X, Wen Z H. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J]. J. Am. Chem. Soc., 2022, 144(16): 7224-7235.
doi: 10.1021/jacs.1c13740
pmid: 35404594
|
[33] |
Ding Y C, Cai P W, Wen Z H. Electrochemical neutralization energy: from concept to devices[J]. Chem. Soc. Rev., 2021, 50(3): 1495-1511.
doi: 10.1039/d0cs01239d
pmid: 33346772
|
[34] |
Wang G X, Chen J X, Li K K, Huang J H, Huang Y C, Liu Y J, Hu X, Zhao B S, Yi L C, Jones T W, Wen Z H. Cost-effective and durable electrocatalysts for Co-electrolysis of CO2conversion and glycerol upgrading[J]. Nano Energy, 2022, 92: 106751.
doi: 10.1016/j.nanoen.2021.106751
URL
|
[35] |
Xu Y, Liu M Y, Wang S Q, Ren K L, Wang M Z, Wang Z Q, Li X N, Wang L, Wang H J. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays[J]. Appl. Catal., B, 2021, 298: 120493.
doi: 10.1016/j.apcatb.2021.120493
URL
|
[36] |
Vo T G, Ho P Y, Chiang C Y. Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide[J]. Appl. Catal. B, 2022, 300: 120723.
doi: 10.1016/j.apcatb.2021.120723
URL
|
[37] |
Xie Y A, Zhou Z Y, Yang N J, Zhao G H. An overall reaction integrated with highly selective oxidation of 5‐hydroxymethylfurfural and efficient hydrogen evolution[J]. Adv. Funct. Mater., 2021, 31(34): 2102886.
doi: 10.1002/adfm.v31.34
URL
|