欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2023, Vol. 29 ›› Issue (2): 2215006.  doi: 10.13208/j.electrochem.2215006

所属专题: “电催化和燃料电池”专题文章

• 综述 • 上一篇    下一篇

固体氧化物电解池阳极材料研究进展

邹庚a,b, 冯炜程a,b, 宋月锋a,*(), 汪国雄a,*()   

  1. a中国科学院大连化学物理研究所,催化国家重点实验室,洁净能源国家实验室,辽宁 大连 116023
    b中国科学院大学,北京 100049
  • 收稿日期:2022-06-02 修回日期:2022-06-23 接受日期:2022-08-31 出版日期:2023-02-28 发布日期:2022-09-04

Recent Advances in Anode Materials of Solid Oxide Electrolysis Cells

Geng Zoua,b, Wei-Cheng Fenga,b, Yue-Feng Songa,*(), Guo-Xiong Wanga,*()   

  1. aState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-06-02 Revised:2022-06-23 Accepted:2022-08-31 Published:2023-02-28 Online:2022-09-04
  • Contact: *Yue-Feng Song, Tel: (86-411)84379511, E-mail address: songyf2014@dicp.ac.cn.*Guo-Xiong Wang, Tel: (86-411)84379511, E-mail address: wanggx@dicp.ac.cn.

摘要:

近年来,固体氧化物电解池(SOEC)作为一种高效的电化学能量转换装置,由于其大电流密度、高法拉第效率和高能量效率受到广泛的关注。阳极析氧反应(OER)是SOEC中重要的电极反应,涉及四电子转移过程,反应动力学缓慢,在电解过程中阳极极化电阻较大且能耗高。因此,设计高效稳定的阳极材料对提高SOEC性能及推动SOEC实际应用至关重要。近年来,高性能阳极研究取得了一系列进展。在本综述中,重点介绍了CO2和H2O电解的反应机理,总结了不同类型阳极材料的物理化学和电化学性能,讨论了各种有效的阳极优化策略。此外,还对SOEC的未来研究进行了展望。这对阳极材料的发展和SOEC的实际应用有一定的指导意义。

关键词: 固体氧化物电解池, 阳极材料, CO2 和/或H2O电解, 钙钛矿氧化物

Abstract:

Solid oxide electrolysis cell (SOEC) as an electrochemical energy conversion device has attracted increasing attention due to its large current density, high Faradaic efficiency and energy efficiency. Oxygen evolution reaction at the anode, a four-electron transfer process, is an important half-reaction for SOEC, which contributes to the main polarization resistance and consumes most electric energy during the electrolysis process. Hence, designing anode materials with high activity and stability is crucial for the performance improvement and practical application of SOEC. Recently, some advances have been made in the development of high-performance anode. In the current review, the mechanisms for CO2 and/or H2O electrolysis are highlighted. The physicochemical and electrochemical properties of different types of anodes are summarized. Various efficient strategies for anode optimization are introduced. Furthermore, the outlook for the future research of SOEC is included. This review might be helpful for the development of anode materials and the practical application of SOEC.

Key words: Solid oxide electrolysis cell, Anode materials, CO2 and/or H2O electrolysis, Perovskite oxide