电化学(中英文) ›› 2023, Vol. 29 ›› Issue (1): 2215008. doi: 10.13208/j.electrochem.2215008
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2022-07-15
修回日期:
2022-08-17
接受日期:
2022-09-01
出版日期:
2023-01-28
发布日期:
2022-09-04
Zong-Nan Weia,b, Min-Na Caob,*(), Rong Caob,*()
Received:
2022-07-15
Revised:
2022-08-17
Accepted:
2022-09-01
Published:
2023-01-28
Online:
2022-09-04
Contact:
* Min-Na Cao: Tel: (86-591)83714517, E-mail address: 摘要:
金属纳米材料在电催化应用中展示出良好的性能,但是它们依旧面临着稳定性差和调控策略有限的问题。引入第二组分是一种有效的策略,能够很好的改善其催化活性与稳定性。在这篇综述中,我们概述了结合金属纳米材料和瓜环(CB[n])用于电催化应用。瓜环是一系列的具有刚性结构、高稳定性、与金属配位的官能团的大环,它们适合稳定金属纳米材料并对其进行调控。本文讨论按照瓜环的功能分类,包含瓜环作为保护剂、瓜环基的超分子自组装体以及瓜环作为前驱体制备氮掺杂多孔碳。多种金属纳米催化剂,包括金属纳米颗粒(Pt,Ir,Pd,Ru,Au)、金属单原子(Fe,Co,Ni)以及过渡金属碳化物(TMCs)成功与瓜环或瓜环衍生的碳材料复合,这些复合材料在许多电催化反应中展示出优异的性能和稳定性,反应包括了氧还原反应(ORR)、析氧反应(OER)、析氢反应(HER)、二氧化碳还原反应(CO2RR)、甲烷氧化反应(MOR)、乙醇氧化反应(EOR)。其中,一些金属-瓜环复合物可进一步作为双功能催化剂用于全水解和燃料电池中。瓜环基的纳米催化剂具有媲美商用催化剂的性能,其稳定性甚至可优于商用催化剂。实验分析以及密度泛函理论(DFT)计算均证明,该提升得益于瓜环和金属纳米晶之间的相互作用以及瓜环自身的稳定性。最后,我们讨论了瓜环基电催化剂的挑战与机遇。本综述提供了通过瓜环构筑具有优异性能的金属纳米材料,并期待该策略将有助于开发高效催化剂并用于更多的电化学应用中。
韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008.
Zong-Nan Wei, Min-Na Cao, Rong Cao. Research Progress in Cucurbit[n]uril-Based Metal Nanomaterials for Electrocatalytic Applications[J]. Journal of Electrochemistry, 2023, 29(1): 2215008.
[1] |
Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K, Hahn C, Norskov J K, Jaramillo T F, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem. Rev., 2019, 119(12): 7610-7672.
doi: 10.1021/acs.chemrev.8b00705 URL |
[2] |
Jiang X, Nie X W, Guo X W, Song C S, Chen J G G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem. Rev., 2020, 120(15): 7984-8034.
doi: 10.1021/acs.chemrev.9b00723 pmid: 32049507 |
[3] |
Zheng Y, Jiao Y, Vasileff A, Qiao S Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7568-7579.
doi: 10.1002/anie.201710556 pmid: 29194903 |
[4] |
Wu Z P, Lu X F, Zang S Q, Lou X W. Non‐noble‐metal‐based electrocatalysts toward the oxygen evolution reaction[J]. Adv. Funct. Mater., 2020, 30(15): 1910274.
doi: 10.1002/adfm.v30.15 URL |
[5] | Feng Y C, Wang X, Wang Y Q, Yan H J, Wang D. In situ characterization of electrode structure and catalytic processes in the electrocatalytic oxygen reduction reaction[J]. J. Electrochem., 2022, 28(3): 112-124. |
[6] |
Tomboc G M, Choi S, Kwon T, Hwang Y J, Lee K Y. Potential Link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs[J]. Adv. Mater., 2020, 32(17): 1908398.
doi: 10.1002/adma.v32.17 URL |
[7] |
Yao Q, Huang B L, Zhang N, Sun M Z, Shao Q, Huang X Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis[J]. Angew. Chem. Int. Ed., 2019, 58(39): 13983-13988.
doi: 10.1002/anie.201908092 pmid: 31342633 |
[8] |
Mamtani K, Jain D, Dogu D, Gustin V, Gunduz S, Co A C, Ozkan U S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media[J]. Appl. Catal. B, 2018, 220: 88-97.
doi: 10.1016/j.apcatb.2017.07.086 URL |
[9] |
Liu M L, Zhao Z P, Duan X F, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Adv. Mater., 2019, 31(6): 1802234.
doi: 10.1002/adma.v31.6 URL |
[10] | Zhuang Z H, Chen W. Application of atomically precise metal nanoclusters in electrocatalysis[J]. J. Electrochem., 2021, 27(2): 125-143. |
[11] |
Loiudice A, Lobaccaro P, Kamali E A, Thao T, Huang B H, Ager J W, Buonsanti R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J]. Angew. Chem. Int. Ed., 2016, 55(19): 5789-5792.
doi: 10.1002/anie.201601582 pmid: 27059162 |
[12] |
Huang J F, Hormann N, Oveisi E, Loiudice A, Gregorio G L, Andreussi O, Marzari N, Buonsanti R. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction[J]. Nat. Commun., 2018, 9: 3117
doi: 10.1038/s41467-018-05544-3 |
[13] |
Qiu J C, Nguyen Q N, Lyu Z H, Wang Q X, Xia Y N. Bimetallic Janus nanocrystals: Syntheses and applications[J]. Adv. Mater., 2022, 34(1): 2102591.
doi: 10.1002/adma.v34.1 URL |
[14] |
Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nat. Nanotechnol., 2017, 12(5): 441-446.
doi: 10.1038/nnano.2016.304 pmid: 28192390 |
[15] |
Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.
doi: 10.1021/jacs.0c12740 pmid: 33656891 |
[16] |
Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit[n]uril family[J]. Angew. Chem. Int. Ed., 2005, 44(31): 4844-4870.
doi: 10.1002/(ISSN)1521-3773 URL |
[17] | Brehrend R, Meyer E, Rusche F. I. ueber condensationsproducte aus glycoluril und formaldehyd[J]. Eur. J. Org. Chem., 1905, 339(1): 1-37. |
[18] |
Freeman W A, Mock W L, Shih N Y. Cucurbituril[J]. J. Am. Chem. Soc., 1981, 103(24): 7367-7368.
doi: 10.1021/ja00414a070 URL |
[19] |
Kim S Y, Jung I S, Lee E, Kim J, Sakamoto S, Yamaguchi K. Kim K. Macrocycles within macrocycles: Cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril[J]. Angew. Chem. Int. Ed., 2001, 40(11): 2119-2121.
doi: 10.1002/(ISSN)1521-3773 URL |
[20] |
Zhao J Z, Kim H J, Oh J, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Cucurbit[n]uril derivatives soluble in water and organic solvents[J]. Angew. Chem. Int. Ed., 2001, 40(22): 4233-4235.
doi: 10.1002/1521-3773(20011119)40:22<4233::AID-ANIE4233>3.0.CO;2-D pmid: 29712114 |
[21] |
Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry[J]. Acc. Chem. Res., 2003, 36(8): 621-630.
doi: 10.1021/ar020254k URL |
[22] |
Lee T C, Scherman O A. Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles[J]. Chem. Commun., 2010, 46(14): 2438-2440.
doi: 10.1039/b925051d URL |
[23] |
de la Rica R, Velders A H. Biomimetic crystallization of Ag2S nanoclusters in nanopore assemblies[J]. J. Am. Chem. Soc., 2011, 133(9): 2875-2877.
doi: 10.1021/ja110272g pmid: 21319820 |
[24] |
Cao M N, Lin J X, Yang H X, Cao R. Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent[J]. Chem. Commun., 2010, 46(28): 5088-5090.
doi: 10.1039/c0cc00541j URL |
[25] |
Cao M N, Wu D S, Su W P, Cao R. Palladium nanocrystals stabilized by cucurbit[6]uril as efficient heterogeneous catalyst for direct C-H functionalization of polyfluoroarenes[J]. J Catal., 2015, 321: 62-69.
doi: 10.1016/j.jcat.2014.10.013 URL |
[26] |
Li H F, Lu J, Lin J X, Huang Y B, Cao M N, Cao R. Crystalline hybrid solid materials of palladium and decamethylcucurbit[5]uril as recoverable precatalysts for heck cross-coupling reactions[J]. Chem. Eur. J., 2013, 19(46): 15661-15668.
doi: 10.1002/chem.v19.46 URL |
[27] |
Zhao F, Wen B, Niu W H, Chen Z, Yan C, Selloni A, Tully C G, Yang X F, Koel B E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification[J]. J. Am. Chem. Soc., 2021, 143(38): 15616-15623.
doi: 10.1021/jacs.1c03473 pmid: 34469132 |
[28] |
Yin J, Jin J, Lu M, Huang B L, Zhang H, Peng Y, Xi P X, Yan C H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. J. Am. Chem. Soc., 2020, 142(43): 18378-18386.
doi: 10.1021/jacs.0c05050 URL |
[29] |
You H H, Wu D S, Chen Z N, Sun F F, Zhang H, Chen Z H, Cao M N, Zhuang W, Cao R. Highly active and stable water splitting in acidic media using a bifunctional iridium/cucurbit[6]uril catalyst[J]. ACS Energy Lett., 2019, 4(6): 1301-1307.
doi: 10.1021/acsenergylett.9b00553 URL |
[30] |
Cao M N, Wu D S, Gao S Y, Cao R. Platinum nanoparticles stabilized by cucurbit[6]uril with enhanced catalytic activity and excellent poisoning tolerance for methanol electrooxidation[J]. Chem. Eur. J., 2012, 18(41): 12978-12985.
doi: 10.1002/chem.201201817 URL |
[31] |
Wu D S, Cao M N, Cao R. Replacing PVP by macrocycle cucurbit[6]uril to cap sub-5 nm Pd nanocubes as highly active and durable catalyst for ethanol electrooxidation[J]. Nano Res., 2019, 12(10): 2628-2633.
doi: 10.1007/s12274-019-2499-0 |
[32] |
Zhang S Y, Cao M N, Cao R. Multipod Pd-cucurbit[6]uril as an efficient bifunctional electrocatalyst for ethanol oxidation and oxygen reduction reactions[J]. ACS Sustain. Chem. Eng., 2020, 8(24): 9217-9225.
doi: 10.1021/acssuschemeng.0c03355 URL |
[33] |
Gong Z W, Wu D S, Cao M N, Zhao C, Cao R. Ultrafine Ru nanoclusters anchored on cucurbit[6]uril/rGO for efficient hydrogen evolution in a broad pH range[J]. Chem. Commun., 2020, 56(65): 9392-9395.
doi: 10.1039/D0CC03652H URL |
[34] |
Chen R R, Cao M N, Yang W G, Wang H M, Zhang S Y, Li H F, Cao R. Ultra-small Pd nanoparticles derived from a supramolecular assembly for enhanced electrochemical reduction of CO2 to CO[J]. Chem. Commun., 2019, 55(66): 9805-9808.
doi: 10.1039/C9CC02393C URL |
[35] |
Song X M, Cao M N, Chen R R, Wang H M, Li H F, Cao R. Enhanced selectivity and stability towards CO2 reduction of sub-5 nm Au NPs derived from supramolecular assembly[J]. Chem. Commun., 2021, 57(20): 2491-2494.
doi: 10.1039/D0CC08353D URL |
[36] |
Chen R R, Cao M N, Wang J Y, Li H F, Cao R. Decamethylcucurbit[5]uril based supramolecular assemblies as efficient electrocatalysts for the oxygen reduction reaction[J]. Chem. Commun., 2019, 55(78): 11687-11690.
doi: 10.1039/C9CC05899K URL |
[37] |
Khaligh A, Sheidaei Y, Tuncel D. Covalent organic framework constructed by clicking azido porphyrin with perpropargyloxy-cucurbit[6]uril for electrocatalytic hydrogen generation from water splitting[J]. ACS Appl. Energy Mater., 2021, 4(4): 3535-3543.
doi: 10.1021/acsaem.0c03265 URL |
[38] |
Zhang C C, Liu X L, Liu Y P, Liu Y. Two-dimensional supramolecular nanoarchitectures of polypseudorotaxanes based on cucurbit[8]uril for highly efficient electrochemical nitrogen reduction[J]. Chem. Mater., 2020, 32(19): 8724-8732.
doi: 10.1021/acs.chemmater.0c03425 URL |
[39] |
Xie J, Peng H J, Huang J Q, Xu W T, Chen X, Zhang Q. A supramolecular capsule for reversible polysulfide storage/delivery in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(51): 16223-16227.
doi: 10.1002/anie.201710025 pmid: 29112779 |
[40] | Xie J, Li B Q, Song Y W, Peng H J, Zhang Q. A supramolecular electrolyte for lithium-metal batteries[J]. Batteries & Supercaps, 2020, 3(1): 47-51. |
[41] |
Wang J, Ciucci F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction[J]. Appl. Catal. B, 2019, 254: 292-299.
doi: 10.1016/j.apcatb.2019.05.009 URL |
[42] |
Peng Q L, Chen J F, Ji H X, Morita A, Ye S. Origin of the overpotential for the oxygen evolution reaction on a well-defined graphene electrode probed by in situ sum frequency generation vibrational spectroscopy[J]. J. Am. Chem. Soc., 2018, 140(46): 15568-15571.
doi: 10.1021/jacs.8b08285 URL |
[43] |
Sun H M, Tian C Y, Fan G L, Qi J N, Liu Z T, Yan Z H, Cheng F Y, Chen J, Li C P, Du M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities[J]. Adv. Funct. Mater., 2020, 30(32): 1910596.
doi: 10.1002/adfm.v30.32 URL |
[44] |
Zhang X, Xu H M, Li X X, Li Y Y, Yang T B, Liang Y Y. Facile synthesis of nickel-iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting[J]. ACS Catal., 2016, 6(2): 580-588.
doi: 10.1021/acscatal.5b02291 URL |
[45] |
Wu D S, Cao M N, You H H, Zhao C, Cao R. N-doped holey carbon materials derived from a metal-free macrocycle cucurbit[6]uril assembly as an efficient electrocatalyst for the oxygen reduction reaction[J]. Chem. Commun., 2019, 55(92): 13832-13835.
doi: 10.1039/C9CC06939A URL |
[46] |
Xie J, Li B Q, Peng H J, Song Y W, Li J X, Zhang Z W, Zhang Q. From supramolecular species to self-templated porous carbon and metal-doped carbon for oxygen reduction reaction catalysts[J]. Angew. Chem. Int. Ed., 2019, 58(15): 4963-4967.
doi: 10.1002/anie.201814605 pmid: 30667570 |
[47] |
Zhang S Y, Yang W G, Liang Y L, Yang X, Cao M N, Cao R. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries[J]. Appl. Catal. B, 2021, 285: 119780.
doi: 10.1016/j.apcatb.2020.119780 URL |
[48] | Zhao H L, Yang S B, Yang W G, Zhao C, Cao M N, Cao R. Ultrasmall Mo2C embedded in N‐doped holey carbon for high‐efficiency electrochemical oxygen reduction reaction[J]. ChemElectroChem, 2022, 9(10): e202200141. |
[49] |
Xiao X, Zhang H, Xiong Y, Liang F, Yang Y W. Iridium-doped N-rich mesoporous carbon electrocatalyst with synthetic macrocycles as carbon source for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(42): 2105562.
doi: 10.1002/adfm.v31.42 URL |
[1] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[2] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[3] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[4] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[5] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[6] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[7] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[8] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[9] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[10] | 甘团杰, 武建平, 刘石, 区文俊, 凌彬, 康雄武. 低结晶度AuPt-Ru/CNTs合金异质结作为高效多功能电催化剂[J]. 电化学(中英文), 2022, 28(8): 2201241-. |
[11] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[12] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[13] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位 57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[14] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[15] | 滕雪, 牛艳丽, 巩帅奇, 刘璇, 陈作锋. 碳层网络促进Sn/SnO2纳米颗粒选择性CO2还原[J]. 电化学(中英文), 2022, 28(2): 2108441-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||