[1] |
Ethylene Market Size, Share & Covid-19 Impact Analysis, by Application (High-density Polyethylene, Low-Density Polyethylene, Ethylene Oxide, Ethyl Benzene, and Others), and Regional Forecast, 2020-2027[R]. Fortune Business Insights, 2020. Report no.: FBI104532.
|
[2] |
2022-2027年中国环氧乙烷行业市场全景评估及发展战略规划报告[R]. 华经产业研究院, 2022. Report no.: 791393.
|
[3] |
2022-2028年中国乙二醇行业市场深度分析及未来趋势预测报告[R]. 智研咨询, 2022. Report no.: R982367.
|
[4] |
Pu T, Tian H, Ford M E, Rangarajan S, Wachs I E. Overview of selective oxidation of ethylene to ethylene oxide by Ag catalysts[J]. ACS Catalysis, 2019, 9(12): 10727-10750.
doi: 10.1021/acscatal.9b03443
URL
|
[5] |
Pinaeva L G, Noskov A S. Prospects for the development of ethylene oxide production catalysts and processes (review)[J]. Petrol. Chem., 2020, 60(11): 1191-1206.
doi: 10.1134/S096554412011016X
|
[6] |
Boulamanti A, Moya J A. Energy efficiency and GHG emissions: Prospective scenarios for the chemical and petrochemical industry[R]. Luxembourg: Publications Office of the European Union 28471 EN, doi:10.2760/20486.
doi: 10.2760/20486
|
[7] |
Leow W R, Lum Y, Ozden A, Wang Y H, Nam D H, Chen B, Wicks J, Zhuang T T, Li F W, Sinton D, Sargent E H. Chloride-mediated selective electrosynthesis ofethylene and propylene oxides at highcurrent density[J]. Science, 2020, 368(6496): 1228-1233.
doi: 10.1126/science.aaz8459
pmid: 32527828
|
[8] |
Li R, Xiang K, Peng Z K, Zou Y Q, Wang S Y. Recent advances on electrolysis for simultaneous generation of valuable chemicals at both anode and cathode[J]. Adv. Energy. Mater., 2021, 11(46): 2102292.
doi: 10.1002/aenm.v11.46
URL
|
[9] |
Na J, Seo B, Kim J, Lee C W, Lee H, Hwang Y J, Min B K, Lee D K, Oh H S, Lee U. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation[J]. Nat. Commun., 2019, 10(1): 5193.
doi: 10.1038/s41467-019-12744-y
pmid: 31729357
|
[10] |
Li T F, Cao Y, He J F, Berlinguette C P. Electrolytic CO2 reduction in tandem with oxidative organic chemistry[J]. ACS Cent. Sci., 2017, 3(7): 778-783.
doi: 10.1021/acscentsci.7b00207
URL
|
[11] |
Xie Y A, Zhou Z Y, Yang N J, Zhao G H. An overall reaction integrated with highly selective oxidation of 5‐hydroxymethylfurfural and efficient hydrogen evolution[J]. Adv. Funct. Mater., 2021, 31(34): 2102886.
doi: 10.1002/adfm.v31.34
URL
|
[12] |
Wang T H, Tao L, Zhu X R, Chen C, Chen W, Du S Q, Zhou Y Y, Zhou B, Wang D D, Xie C, Long P, Li W, Wang, Y Y, Chen R, Zou Y Q, Fu X Z, Li Y F, Duan X F, Wang S Y. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nat. Catal., 2022, 5(1): 66-73.
doi: 10.1038/s41929-021-00721-y
|
[13] |
Chung M, Jin K, Zeng J S, Manthiram K. Mechanism of chlorine-mediated electrochemical ethylene oxidation in saline water[J]. ACS Catal., 2020, 10(23): 14015-14023.
doi: 10.1021/acscatal.0c02810
URL
|
[14] |
Hong J C, Kuo T C, Yang G L, Hsieh C T, Shen M H, Chao T H, Lu Q, Cheng M J. Atomistic insights into Cl--Triggered highly selective ethylene electrochemical oxidation to epoxide on RuO2: Unexpected role of the in situ generated intermediate to achieve active site isolation[J]. ACS Catal., 2021, 11(21): 13660-13669.
doi: 10.1021/acscatal.1c03574
URL
|
[15] |
Winiwarter A, Silvioli L, Scott S B, Enemark-Rasmussen K, Sariç M, Trimarco D B, Vesborg P C K, Moses P G, Stephens I E L, Seger B, Rossmeisl J, Chorkendorff I. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy & Environ. Sci., 2019, 12(3): 1055-1067.
|
[16] |
Šebera J, Hoffmannová H, Krtil P, Samec Z, Záliš S. Electrochemical and density functional studies of the catalytic ethylene oxidation on nanostructured Au electrodes[J]. Catal. Today, 2010, 158(1-2): 29-34.
doi: 10.1016/j.cattod.2010.05.025
URL
|
[17] |
Xu L P, Xie Y, Li L J, Hu Z F, Wang Y, Yu J C. Highly selective photocatalytic synthesis of ethylene-derived commodity chemicals on biobr nanosheets[J]. Mater. Today Phys., 2021, 21: 100551.
|
[18] |
Jirkovsky J S, Busch M, Ahlberg E, Panas I, Krtil P. Switching on the electrocatalytic ethene epoxidation on nanocrystalline RuO2[J]. J. Am. Chem. Soc., 2011, 133(15): 5882-5892.
doi: 10.1021/ja109955w
pmid: 21438526
|
[19] |
Schalck J, Hereijgers J, Guffens W, Breugelmans T. The bromine mediated electrosynthesis of ethylene oxide from ethylene in continuous flow-through operation[J]. Chem. Eng. J., 2022, 446(2): 136750.
doi: 10.1016/j.cej.2022.136750
URL
|
[20] |
Dahms H, Bockris J O'M. The relative electrocatalytic activity of noble metals in the oxidation of ethylene[J]. J. Electrochem. Soc., 1964, 111(6): 728.
doi: 10.1149/1.2426221
URL
|
[21] |
Blake A R, Sunderland J G, Kuhn A T. The partial anodic oxidation of ethylene on palladium[J]. J. Chem. Soc. A, 1969: 3015-3018.
|
[22] |
Lum Y, Huang J E, Wang Z, Luo M, Nam D H, Leow W R, Chen B, Wicks J, Li YC, Wang Y, Dinh C T, Li J, Zhuang T T, Li F, Sham T K, Sinton D, Sargent E H. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol[J]. Nat. Catal., 2020, 3(1): 14-22.
doi: 10.1038/s41929-019-0386-4
|
[23] |
F. Goodridge CJHK. Oxidation of ethylene at a palladium electrode[J]. Trans. Faraday Soc., 1970, 66: 2889-2896.
doi: 10.1039/tf9706602889
URL
|
[24] |
Triaca W E, Castroluna A M, Arvia A J. The electrocatalytic oxidation of ethylene on platinized platinum at different saturation pressures[J]. J. Electrochem. Soc., 1980, 127(4): 827-833.
doi: 10.1149/1.2129765
|
[25] |
Boyd M J, Latimer A A, Dickens C F, Nielander A C, Hahn C, Nørskov J K, Higgins D C, Jaramillo T F. Electro-oxidation of methane on platinum under ambient conditions[J]. ACS Catal., 2019, 9(8): 7578-7587.
doi: 10.1021/acscatal.9b01207
|
[26] |
Spendelow J S, Goodpaster J D, Kenis P J A, Wieckowski A. Mechanism of Co oxidation on Pt(111) in alkaline media[J]. J. Phys. Chem. B, 2006, 110(19): 9545-9555.
doi: 10.1021/jp060100c
URL
|
[27] |
Birss V I, Beck V H, Zhang A J, Vanysek P. Properties of thin, hydrous Pd oxide films[J]. J. Electroanal. Chem., 1996, 429(1-2): 175-184.
doi: 10.1016/S0022-0728(96)05007-3
URL
|
[28] |
Jaksic M M, Johansen B, Tunold R. Electrochemical-behavior of palladium in acidic and alkaline-solutions of heavy and regular water[J]. Int. J. Hydrog. Energy, 1993, 18(2): 111-124.
doi: 10.1016/0360-3199(93)90197-I
URL
|
[29] |
Chierchie T, Mayer C, Lorenz W J. Structural changes of surface oxide layers on palladium[J]. J. Electroanal. Chem., 1982, 135(2): 211-220.
doi: 10.1016/0368-1874(82)85121-6
URL
|
[30] |
Grden M, Lukaszewski M, Jerkiewicz G, Czerwinski A. Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption[J]. Electrochim. Acta, 2008, 53(26): 7583-7598.
doi: 10.1016/j.electacta.2008.05.046
URL
|
[31] |
Dall'Antonia L H, remiliosi-Filho G, Jerkiewicz G. Influence of temperature on the growth of surface oxides on palladium electrodes[J]. J. Electroanal. Chem., 2001, 502(1-2): 72-81.
doi: 10.1016/S0022-0728(00)00505-2
URL
|
[32] |
Sashikata K, Matsui Y, Itaya K, Soriaga M P. Adsorbed-iodine-catalyzed dissolution of Pd single-crystal electrodes: studies by electrochemical scanning tunneling microscopy[J]. J. Phys. Chem., 1996, 100(51): 20027-20034.
doi: 10.1021/jp9620532
URL
|
[33] |
Perdriel CL, Custidiano E, Arvia A J. Modifications of palladium electrode surfaces produced by periodic potential treatments[J]. J. Electroanal. Chem., 1988, 246(1): 165-180.
doi: 10.1016/0022-0728(88)85058-7
URL
|
[34] |
Juodkazis K, Juodkazyte J, Sebeka B, Stalnionis G, Lukinskas A. Anodic dissolution of palladium in sulfuric acid: an electrochemical quartz crystal microbalance study[J]. Russ. J. Electrochem., 2003, 39(9): 954-959.
doi: 10.1023/A:1025724021078
URL
|
[35] |
Hammer B, Norskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240.
doi: 10.1038/376238a0
|