[1] |
Wang G J, Yu Y, Liu H, Gong C L, Wen S, Wang X H, Tu Z K. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review[J]. Fuel Process Technol., 2018, 179: 203-228.
doi: 10.1016/j.fuproc.2018.06.013
URL
|
[2] |
Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. J. Phys. Chem. Lett., 2016, 7(7): 1127-1137.
doi: 10.1021/acs.jpclett.6b00216
pmid: 26961326
|
[3] |
Ahluwalia R K, Wang X, Steinbach A J. Performance of advanced automotive fuel cell systems with heat rejection constraint[J]. J. Power Sources, 2016, 309: 178-191.
doi: 10.1016/j.jpowsour.2016.01.060
URL
|
[4] |
Béthoux O, Cathelin J. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems[J]. Eur. Phys. J. Appl. Phys., 2010, 52(3): 31102.
doi: 10.1051/epjap/2010148
URL
|
[5] |
Sakka M A, Mierlo J V, Gualous H. Dc/Dc Converters for Electric vehicles[M]. Turkey: Seref S, 2011, 100: 466.
|
[6] |
Kolli A, Gaillard A, De Bernardinis A, Bethoux O, Hissel D, Khatir Z. A review on DC/DC converter architectures for power fuel cell applications[J]. Energ. Convers. Manage., 2015, 105: 716-730.
doi: 10.1016/j.enconman.2015.07.060
URL
|
[7] |
Wen H Q, Su B. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles[J]. Energ. Convers. Manage., 2016, 122: 477-487.
doi: 10.1016/j.enconman.2016.06.021
URL
|
[8] |
Xu H P, Kong L, Wen X H. Fuel cell power system and high power DC-DC converter[J]. IEEE T Power. Electr., 2004, 19(5): 1250-1255.
doi: 10.1109/TPEL.2004.833440
URL
|
[9] |
Tanrioven M, Alam M S. Modeling, control, and power quality evaluation of a PEM fuel cell-based power supply system for residential use[J]. IEEE T Power. Electr., 2006, 42(6): 1582-1589.
|
[10] |
Zenith F, Skogestad S. Control of fuel cell power output[J]. J. Process Contr., 2007, 17(4): 333-347.
doi: 10.1016/j.jprocont.2006.10.004
URL
|
[11] |
Shen J, Xu L, Chang H W, Tu Z K, Chan S H. Partial flooding and its effect on the performance of a proton exchange membrane fuel cell[J]. Energ. Convers. Manage., 2020, 207: 112537.
doi: 10.1016/j.enconman.2020.112537
URL
|
[12] |
Xing L, Shi W D, Su H N, Xu Q, Das P K, Mao B D, Scott K. Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization[J]. Energy, 2019, 177: 445-464.
doi: 10.1016/j.energy.2019.04.084
|
[13] |
Laribi S, Mammar K, Sahli Y, Koussa K. Analysis and diagnosis of PEM fuel cell failure modes (flooding & drying) across the physical parameters of electrochemical impedance model: Using neural networks method[J]. Sustain. Energy Technol. Assess., 2019, 34: 35-42.
|
[14] |
Ijaodola O S, El-Hassan Z, Ogungbemi E, Khatib F N, Wilberforce T, Thompson J, Olabi A G. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179: 246-267.
doi: 10.1016/j.energy.2019.04.074
|
[15] |
Li Y H, Pei P C, Wu Z Y, Ren P, Jia X N, Chen D F, Huang S W. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells[J]. Appl. Energ., 2018, 224: 42-51.
doi: 10.1016/j.apenergy.2018.04.071
URL
|
[16] |
Sun R L, Xia Z X, Shang L, Fu X D, Li H Q, Wang S L, Sun G Q. Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes[J]. J. Mater. Chem. A, 2017, 5(29): 15260-15265.
doi: 10.1039/C7TA02500A
URL
|
[17] |
Zeng Y C, Shao Z G, Zhang H J, Wang Z Q, Hong S J, Yu H M, Yi B L. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells[J]. Nano Energy, 2017, 34: 344-355.
doi: 10.1016/j.nanoen.2017.02.038
URL
|
[18] |
Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Adv. Energy Mater., 2011, 1(6): 1205-1214.
doi: 10.1002/aenm.201100371
URL
|
[19] |
Steinbach A J, Debe M K, Pejsa M J, Peppin D M, Haug A T, Kurkowski M J, Hendricks S M. Influence of Anode GDL on PEMFC ultra-thin electrode water management at low temperatures[M]. ECS Trans. 2011, 41: 449-457.
|
[20] |
Jiang S F, Yi B L. The progress of order-structured membrane electrode assembly[J]. J. Electrochem., 2016, 22(3): 213-218.
|
[21] |
Yan C, Wang T. A new view for nanoparticle assemblies: From crystalline to binary cooperative complementarity[J]. Chem. Soc. Rev., 2017, 46(5): 1483-1509.
doi: 10.1039/c6cs00696e
pmid: 28059420
|
[22] |
Li T T, Xue B, Wang B W, Guo G N, Han D D, Yan Y C, Dong A G. Tubular monolayer superlattices of hollow Mn3O4nanocrystals and their oxygen reduction activity[J]. J. Am. Chem. Soc., 2017, 139(35): 12133-12136.
doi: 10.1021/jacs.7b06587
URL
|
[23] |
Cheng K Y, Lin C H, Tzeng M C, Mahmood A, Saeed M, Chen C H, Ong C W, Lee S L. Superstructure manipulation and electronic measurement of monolayers comprising discotic liquid crystals with intrinsic dipole moment using STM/STS[J]. Chem. Commun., 2018, 54(58): 8048-8051.
doi: 10.1039/C8CC04241A
URL
|
[24] |
Ding J, Liu Z, Liu X R, Liu J, Deng Y D, Han X P, Zhong C, Hu W B. Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation[J]. Adv. Energy Mater., 2019, 9(25): 1900955.
doi: 10.1002/aenm.v9.25
URL
|
[25] |
Burian M, Karner C, Yarema M, Heiss W, Amenitsch H, Dellago C, Lechner R T. A shape-induced orientation phase within 3D nanocrystal solids[J]. Adv. Mater., 2018, 30(32): 1802078.
doi: 10.1002/adma.v30.32
URL
|
[26] |
Wang J, Wu G P, Wang W L, Xuan W H, Jiang J X, Wang J C, Li L, Lin W F, Ding W, Wei Z D. A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies[J]. J. Mater. Chem. A, 2019, 7(34): 19786-19792.
doi: 10.1039/c9ta06712d
|
[27] |
Wang J, Ding W, Wei Z D. Review: Performance of polymer electrolyte membrane fuel cells at ultra-low platinum loadings[J]. Acta Phys. -Chim. Sin., 2020, 37(9): 2009094.
|
[28] |
Wang J, Wu G P, Xuan W H, Peng L S, Feng Y, Ding W, Li L, Liao Q, Wei Z D. A framework ensemble facilitates high Pt utilization in a low Pt loading fuel cell[J]. Catal. Sci. Technol., 2021, 11(8): 2957-2963.
doi: 10.1039/D1CY00028D
URL
|
[29] |
Wang Y C, Lai Y J, Song L, Zhou Z Y, Liu J G, Wang Q, Yang X D, Chen C, Shi W, Zheng Y P, Rauf M, Sun S G. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density[J]. Angew. Chem. Int. Edit., 2015, 54(34): 9907-9910.
doi: 10.1002/anie.v54.34
URL
|
[30] |
Wang M J, Zhao T, Luo W, Mao Z X, Chen S G, Ding W, Deng Y H, Li W, Li J, Wei Z D. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE J., 2018, 64(7): 2881-2889.
doi: 10.1002/aic.v64.7
URL
|