电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 243-252. doi: 10.13208/j.electrochem.191145
收稿日期:
2019-11-19
修回日期:
2020-02-08
出版日期:
2020-04-28
发布日期:
2020-03-29
通讯作者:
符显珠
E-mail:xz.fu@szu.edu.cn
基金资助:
FAN Yun, WANG Qi, LI Jun, LUO Jing-li, FU Xian-zhu*()
Received:
2019-11-19
Revised:
2020-02-08
Published:
2020-04-28
Online:
2020-03-29
Contact:
FU Xian-zhu
E-mail:xz.fu@szu.edu.cn
摘要:
天然气/页岩气供应大幅增加推动了全球由乙烷制取乙烯等增值化学品的发展,深刻改变着石化产业的格局,乙烷高效清洁地转化为更高价值化学品具有深远意义. 乙烷蒸汽裂解制乙烯是一项比较成熟的工业生产技术,但是这一过程存在耗能高、积碳严重、热力学平衡受限等问题. 电能-增值化学品共生固体氧化物燃料电池由于可以将燃料气自发反应转化为高价值化学品的同时释放电能的特点被广泛研究. 本文总结了采用共生固体氧化物燃料电池将乙烷电化学脱氢共生乙烯增值化学品和电能的最新研究进展,重点介绍了固体氧化物燃料电池在乙烷脱氢中的工作原理和优势以及电解质和电极材料的选择等方向的研究发展,表明通过燃料电池技术低能耗实现乙烷共生乙烯增值化学品与电能具有显著的优越性,在实现高效节能的工业化生产中具有非常巨大的应用潜力.
中图分类号:
樊赟, 王琦, 李俊, 骆静利, 符显珠. 乙烷脱氢共生电能-增值化学品固体氧化物燃料电池研究进展[J]. 电化学(中英文), 2020, 26(2): 243-252.
FAN Yun, WANG Qi, LI Jun, LUO Jing-li, FU Xian-zhu. Research Progress in Ethane Dehydrogenation to Cogenerate Power and Value-Added Chemicals in Solid Oxide Fuel Cells[J]. Journal of Electrochemistry, 2020, 26(2): 243-252.
[1] | Lü Y( 吕尧), Huang B( 黄波), Gu X Z( 顾习之 ), et al. Fabrication and characterization of the Ni-ScSZ composite anodes with a Cu-LSCM-CeO2 catalyst layer in the thin film SOFC[J]. Journal of Electrochemistry( 电化学), 2014,20(5):470-475. |
[2] | Vayenas C G, Farr R D . Cogeneration of electric energy and nitric oxide[J]. Science, 1980,208(4444):593-594. |
[3] |
Shao Z P, Zhang C M, Wang W , et al. Electric power and synjournal gas co-generation from methane with zero waste gas emission[J]. Angewandte Chemie International Edition, 2012,50(8):1792-1797.
doi: 10.1002/anie.v50.8 URL |
[4] | Torabi A, Barton J, Willman C , et al. Developing low-intermediate temperature fuel cells for direct conversion of methane to methanol fuel[J]. ECS Transactions, 2016,72(7):193-199. |
[5] |
Hugill J A, Tillemans F W A, Dijkstra J W , et al. Feasibility study on the co-generation of ethylene and electricity through oxidative coupling of methane[J]. Applied Thermal Engineering, 2015,25(8):1259-1271.
doi: 10.1016/j.applthermaleng.2004.09.007 URL |
[6] |
Morejudo S H, Zanon R, Escolastico S , et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016,353(6299):563-566.
doi: 10.1126/science.aag0274 URL |
[7] |
Fu X Z, Luo J L, Sanger A R , et al. An integral proton conducting SOFC for simultaneous production of ethylene and power from ethane[J]. Chemical Communications, 2010,46(12):2052-2054.
doi: 10.1039/b926928b URL |
[8] |
Feng Y, Luo J L, Chuang K T . Conversion of propane to propylene in a proton-conducting solid oxide fuel cell[J]. Fuel, 2007,86(1/2):123-128.
doi: 10.1016/j.fuel.2006.06.012 URL |
[9] | Zhang J P( 张金萍 ). The preparation and study of co-generation of electricity and ethylene solid oxide fuel cells[D]. Harbin Institute of Technology( 哈尔滨工业大学), 2017. |
[10] |
Gao Y F, Neal L, Ding D , et al. Recent advances in intensified ethylene production - A Review[J]. ACS Catalysis, 2019,9(9):8592-8621.
doi: 10.1021/acscatal.9b02922 URL |
[11] | Liu S B, Chuang K T, Luo J L . Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell[J]. ACS Catalysis, 2016,6(2):760-768. |
[12] | Jiang S P( 蒋三平 ). Advances and challenges of intermediate temperature solid oxide fuel cells: A concise review[J]. Journal of Electrochemistry( 电化学), 2012,18(6):479-495. |
[13] | Fu X Z, Lin J Y, Xu S , et al. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode[J]. Physical Chemistry Chemical Physics, 2011,13(43):19615-19623. |
[14] |
Zhu B, Albinsson I, Andersson C , et al. Electrolysis studies based on ceria-based composites[J]. Electrochemistry Communications, 2006,8(3):495-498.
doi: 10.1016/j.elecom.2006.01.011 URL |
[15] | Singhal S . High-temperature solid oxide fuel cells: fundamentals, design and applications[J]. Materials Today, 2002,5(12):55. |
[16] | Shi Z, Luo J L, Wang S , et al. Protonic membrane for fuel cell for co-generation of power and ethylene[J]. Journal of Power Sources, 2008,176(1):122-127. |
[17] | Fu X Z, Luo J L, Sanger A R , et al. Y-doped BaCeO3-δ nanopowders as proton-conducting electrolyte materials for ethane fuel cells to co-generate ethylene and electricity[J]. Journal of Power Sources, 2010,195(9):2659-2663. |
[18] | Wang S, Luo J L, Sanger A R , et al. Performance of ethane/oxygen fuel cells using yttrium-doped barium cerate as electrolyte at intermediate temperatures[J]. Journal of Physical Chemistry C, 2007,111(13):5069-5074. |
[19] | Shao L, Si F, Fu X Z , et al. Stable SrCo0.7Fe0.2Zr0.1O3-δ cathode material for proton conducting solid oxide fuel cell reactors[J]. International Journal of Hydrogen Energy, 2018,43(15):7511-7514. |
[20] | Lin J Y, Shao L, Si F Z , et al. Multiple-doped barium cerate proton-conducting electrolytes for chemical-energy cogeneration in solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2018,43(42):17904-17910. |
[21] |
Fu X Z, Luo J L, Sanger A R , et al. Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors[J]. Electrochimica Acta, 2010,55(3):1145-1149.
doi: 10.1016/j.electacta.2009.10.010 URL |
[22] | Han M F( 韩敏芳), Peng S P( 彭苏萍 ). Solid oxide fuel cell material and preparation[M]. Beijing: Science Press( 科学出版社), 2004. |
[23] |
Sun C, Stimming U . Recent anode advances in solid oxide fuel cells[J]. Journal of Power Sources, 2007,171(2):247-260.
doi: 10.1016/j.jpowsour.2007.06.086 URL |
[24] | Gao F, Zhao H L, Li X , et al. Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency[J]. Journal of Power Sources, 2008,185(1):26-31. |
[25] | Huang X L( 黄贤良), Zhao H L( 赵海雷), Wu W J( 吴卫江 ), et al. Research progress on anode materials of solid oxide fuel cells[J]. Journal of the Chinese Ceramic Society( 硅酸盐学报), 2005,33(11):1407-1413. |
[26] | Murray E P, Tsai T, Barnett S A . A direct-methane fuel cell with a ceria-based anode[J]. Nature, 2016,400(6745):649-651. |
[27] | Tsipis E V, Kharton V V, Frade J R . Mixed conducting components of solid oxide fuel cell anodes[J]. Journal of the European Ceramic Society, 2005,25(12):2623-2626. |
[28] | Fu X Z, Luo X X, Luo J L , et al. Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity[J]. Journal of Power Sources, 2011,196(3):1036-1041. |
[29] |
Mackenzie J D, Bescher E P . Chemical routes in the synjournal of nanomaterials using the sol-gel process[J]. Accounts of Chemical Research, 2007,40(9):810-818.
doi: 10.1021/ar7000149 URL |
[30] | Chuang K T, Luo J L, Zhou G H , et al. FeCr2O4 nanoparticles as anode catalyst for ethane proton conducting fuel cell reactors to coproduce ethylene and electricity[J]. Advances in Physical Chemistry, 2011,2011(22):680-694. |
[31] | Lin J Y, Shao L, Si F Z , et al. Co2CrO4 nanopowders as an anode catalyst for simultaneous conversion of ethane to ethylene and power in proton-conducting fuel cell reactors[J]. The Journal of Physical Chemistry C, 2018,122(8):4165-4171. |
[32] | Li J H, Fu X Z, Luo J L , et al. Evaluation of molybdenum carbide as anode catalyst for proton-conducting hydrogen and ethane solid oxide fuel cells[J]. Electrochemistry Communications, 2012,15(1):81-84. |
[33] |
Cui S H, Li J H, Luo J L , et al. Co-generation of energy and ethylene in hydrocarbon fueled SOFCs with Cr3C2 and WC anode catalysts[J]. Ceramics International, 2014,40(8):11781-11786.
doi: 10.1016/j.ceramint.2014.04.007 URL |
[34] | Liu S B, Liu Q X, Fu X Z , et al. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles[J]. Applied Catalysis B: Environmental, 2017,220:283-289. |
[35] | Yang C H, Li J, Lin Y , et al. In situ fabrication of Co Fe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015,11:704-710. |
[36] | Liu S, Behnamian Y, Chuang K T , et al. A-site deficient La0.2Sr0.7TiO3-δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity[J]. Journal of Power Sources, 2015,298:23-29. |
[37] | Dogu D, Meyer K E, Fuller A , et al. Effect of lanthanum and chlorine doping on strontium titanates for the electrocatalytically-assisted oxidative dehydrogenation of ethane[J]. Applied Catalysis B: Environmental, 2018,227:90-101. |
[38] | Mai A, Becker M, Assenmacher W , et al. Time-dependent performance of mixed-conducting SOFC cathodes[J]. Solid State Ionics, 2006,177(19/25):1965-1968. |
[39] | Simner S P, Anderson M D, Coleman J E , et al. Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode[J]. Journal of Power Sources, 2006,161(1):115-122. |
[40] | Kim J D, Kim G D, Moon J W , et al. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy[J]. Solid State Ionics, 2001,143(3/4):379-389. |
[41] | Mitterdorfer A, Gauckler L J . Reaction kinetics of the Pt, O2(g)|c-ZrO2 system: precursor-mediated adsorption[J]. Solid State Ionics, 1999,120(1):211-225. |
[42] | Ostergard M J L, Mogensen M . AC Impedance study of the oxygen reduction mechanism on La1-xSrxMnO3 in solid oxide fuel cells[J]. Electrochimica Acta, 1993,38(14):2015-2020. |
[43] |
Horita T, Yamaji K, Sakai N , et al. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique[J]. Journal of Power Sources, 2002,106(1/2):224-230.
doi: 10.1016/S0378-7753(01)01017-5 URL |
[44] | Shao L, Si F, Fu X Z , et al. Stable SrCo0.7Fe0.2Zr0.1O3-δ, cathode material for proton conducting solid oxide fuel cell reactors[J]. International Journal of Hydrogen Energy, 2018,43:7511-7514. |
[45] | Zhou Y B, An B M, Guo Y M , et al. Development of high performance cathodes for IT-SOFCs through beneficial interfacial reactions[J]. Electrochemistry Communications, 2009,11(11):2216-2219. |
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 吴炜星, 王莹. 乙烯在钯圆盘电极的电化学氧化研究[J]. 电化学(中英文), 2023, 29(1): 2215004-. |
[3] | 王健, 轩文辉, 何倩, 蒋金霞, 周圆圆, 聂瑶, 廖强, 邵敏华, 丁炜, 魏子栋. 类超晶格结构:有序性传质赋予燃料电池高品质输出性能[J]. 电化学(中英文), 2023, 29(1): 2215003-. |
[4] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[5] | 李雪, 龚正良. PEO基聚合物电解质及其锂硫电池性能研究[J]. 电化学(中英文), 2020, 26(3): 338-346. |
[6] | 吕喆, 魏波, 王志红, 田彦婷. 单气室固体氧化物燃料电池的材料、微堆结构与相关应用[J]. 电化学(中英文), 2020, 26(2): 230-242. |
[7] | 韦童, 李箭, 贾礼超, 池波, 蒲健. 钙钛矿材料在固体氧化物燃料电池燃料重整中的应用[J]. 电化学(中英文), 2020, 26(2): 198-211. |
[8] | 刘江, 颜晓敏. 直接碳固体氧化物燃料电池[J]. 电化学(中英文), 2020, 26(2): 175-189. |
[9] | 郑志林,袁晓姿,尹屹梅,马紫峰. 燃料电池反应器在化学品与电能共生中应用[J]. 电化学(中英文), 2018, 24(6): 615-627. |
[10] | 王志刚,赵卫民,王红春,林 敏,龚正良,杨 勇. FEC 基电解液对高压正极材料 Li2CoPO4F 电化学性能的影响[J]. 电化学(中英文), 2018, 24(3): 216-226. |
[11] | 赫威,燕汝,王瑛琦,高翔,马厚义. 在冷轧钢板表面制备二乙烯三胺五甲叉膦酸-锌化学转化膜及其腐蚀防护性能的研究[J]. 电化学(中英文), 2018, 24(2): 111-121. |
[12] | 户献雷, 梁晓旭, 章明秋, 张若昕, 张利萍, 阮文红. 不同锂盐对超支化/梳状复合型聚合物电解质的性能影响研究[J]. 电化学(中英文), 2016, 22(5): 535-541. |
[13] | 吉维肖,王 凤,钱江锋,曹余良,艾新平,杨汉西. 3, 4-乙烯二氧噻吩单体用作锂离子电池安全性改善添加剂的研究[J]. 电化学(中英文), 2016, 22(3): 271-277. |
[14] | 周浩贤,张俊明,屈志宇,张潘宇,樊友军*. 基于Nafion固定磷钼酸和石墨烯共修饰PEDOT膜电极的电化学过氧化氢传感器[J]. 电化学(中英文), 2016, 22(1): 57-63. |
[15] | 郝金凯, 姜永燚, 王 禛, 李晓锦, 邵志刚, 衣宝廉. 高温质子交换膜燃料电池用聚苯并咪唑/聚乙烯基苄基交联膜的制备与性能研究[J]. 电化学(中英文), 2015, 21(5): 441-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||