电化学(中英文) ›› 2022, Vol. 28 ›› Issue (9): 2214004. doi: 10.13208/j.electrochem.2214004
所属专题: “电催化和燃料电池”专题文章
梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩*(), 邹晓新*()
收稿日期:
2022-06-16
修回日期:
2022-07-24
出版日期:
2022-09-28
发布日期:
2022-08-23
Xiao Liang, Ke-Xin Zhang, Yu-Cheng Shen, Ke Sun, Lei Shi, Hui Chen, Ke-Yan Zheng*(), Xiao-Xin Zou*()
Received:
2022-06-16
Revised:
2022-07-24
Published:
2022-09-28
Online:
2022-08-23
Contact:
*Zheng Ke-Yan, Tel:(86)13504331305, 摘要:
在全球能源结构“清洁化”转型的背景下,可再生能源的开发与利用能够有效解决能源危机与环境问题,符合我国的可持续发展路线。能源转换与储存技术贯穿着循环能源技术的各个环节,是新型能源框架的核心支撑。 水氧化反应是众多能源体系(例如, 水裂解反应、 二氧化碳还原反应、 氮还原反应和金属-空气电池)的重要半反应, 但其动力学缓慢, 严重限制了设备的能源效率, 阻碍了相应技术的广泛应用。因此, 亟需开发具有低成本、 高活性、 强稳定性的水氧化电催化剂以降低反应能垒,进而推动能源转换与存储设备的工业化发展。钙钛矿型材料的晶体结构包容性强, 元素组成涵盖广泛, 具有丰富而独特的电子特性, 易于实现表面化学与电子结构的精准调控, 因此被公认为理想的催化材料设计平台。本文综述了钙钛矿型水氧化电催化剂的最新研究进展。首先介绍了钙钛矿型材料的晶体结构和电子特性,归纳了制备钙钛矿型氧化物的代表性的合成策略。通过讨论近期钙钛矿型水氧化电催化剂在酸性和碱性介质中的研究进展, 强调了钙钛矿型电催化剂结构与催化性能间的构效关系。 最后, 我们总结了钙钛矿型水氧化电催化剂在实际应用中面临的挑战与机遇, 提出了相应的建议与解决方案, 期望能使读者更清晰地认识到该领域的未来发展方向。
梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004.
Xiao Liang, Ke-Xin Zhang, Yu-Cheng Shen, Ke Sun, Lei Shi, Hui Chen, Ke-Yan Zheng, Xiao-Xin Zou. Perovskite-Type Water Oxidation Electrocatalysts[J]. Journal of Electrochemistry, 2022, 28(9): 2214004.
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475 URL |
[2] |
Trenberth K E, Cheng L J, Jacobs P, Zhang Y X, Fasullo J. Hurricane harvey links to ocean heat content and climate change adaptation[J]. Earth’s Future, 2018, 6(5): 730-744.
doi: 10.1029/2018EF000825 URL |
[3] |
Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590.
doi: 10.1002/anie.202101522 pmid: 33606339 |
[4] |
Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nat. Mater., 2017, 16(1): 16-22.
doi: 10.1038/nmat4834 URL |
[5] |
Yan Z F, Hitt J L, Turner J A, Mallouk T E. Renewable electricity storage using electrolysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(23): 12558-12563.
doi: 10.1073/pnas.1821686116 URL |
[6] |
De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
doi: 10.1126/science.aav3506 URL |
[7] |
Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: An updated review[J]. Energy Sustain. Dev., 2010, 14(4): 302-314.
doi: 10.1016/j.esd.2010.09.007 URL |
[8] |
Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.
pmid: 27797490 |
[9] |
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
doi: 10.1039/C6CS00328A URL |
[10] |
Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis[J]. Science, 2017, 358(6364): 751-756.
doi: 10.1126/science.aam7092 pmid: 29123062 |
[11] |
Rose G. Ueber einige neue Mineralien des Urals[J]. J. Prakt. Chem., 2010, 19(1): 459-468.
doi: 10.1002/prac.18400190179 URL |
[12] |
Chakhmouradian A R, Woodward P M. Celebrating 175 years of perovskite research: A tribute to Roger H. Mitchell[J]. Phys Chem Miner, 2014, 41(6): 387-391.
doi: 10.1007/s00269-014-0678-9 URL |
[13] | Ortega-San-Martin L. Introduction to perovskites: A historical perspective[M]. New York: Springer, 2020. 1-41. |
[14] | Von Hippel A, Breckenridge R G, Chesley F G, Tisza L. High dielectric constant ceramics[J]. Ind. Eng. Chem., 1946, 6(4): 238-251. |
[15] |
Bednorz J G, Müller K A Z. Possible high Tc supercond-uctivity in the Ba-La-Cu-O system[J]. Z. Phys. B-Condensed Matter., 1986, 64(2): 189-193.
doi: 10.1007/BF01303701 URL |
[16] |
Jonker G H, Santen J. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica, 1950, 16(3): 337-349.
doi: 10.1016/0031-8914(50)90033-4 URL |
[17] |
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
doi: 10.1021/ja809598r pmid: 19366264 |
[18] |
Meadowcroft D B. Low-cost oxygen electrode material[J]. Nature, 1970, 226(5248): 847-848.
doi: 10.1038/226847a0 URL |
[19] |
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385.
doi: 10.1126/science.1212858 pmid: 22033519 |
[20] |
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
doi: 10.1126/science.aaf5050 URL |
[21] |
Xu X M, Zhong Y J, Shao Z P. Double perovskites in ca-talysis, electrocatalysis, and photo(electro)catalysis[J]. Trends Chem., 2019, 1(4): 410-424.
doi: 10.1016/j.trechm.2019.05.006 URL |
[22] |
Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.
doi: 10.1021/acs.chemmater.0c00081 URL |
[23] | Xu X M, Pan Y L, Zhong Y J, Ran R, Shao Z P. Ruddlesden-popper perovskites in electrocatalysis[J]. Mater. Ho-rizons, 2020, 7(10): 2519-2565. |
[24] |
Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides[J]. Chem. Rev., 2001, 101(7): 1981-2017.
pmid: 11710238 |
[25] | George G. Fundamentals of perovskite oxides: Synthesis, structure, properties and applications[M]. Boca Raton: CRC Press, 2020. |
[26] | Tilley R. Perovskites structure-property relationships[M]. Chichester: John Wiley & Sons, 2016: 1-315. |
[27] |
Rodríguez-Carvajal J, Hennion M, Moussa F, Mouden A H, Pinsard L, Revcolevschi A. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3[J]. Phys. Rev. B, 1998, 57(6): R3189-R3192.
doi: 10.1103/PhysRevB.57.R3189 URL |
[28] |
David W I F, Harrison W T A, Gunn J M F, Moze O, Soper A K, Day P, Jorgensen J D, Hinks D G, Beno M A, Soderholm L, Capone Ii D W, Schuller I K, Segre C U, Zhang K, Grace J D. Structure and crystal chemistry of the high-Tc superconductor YBa2Cu3O7-x[J]. Nature, 1987, 327(6120): 310-312.
doi: 10.1038/327310a0 URL |
[29] |
Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S. Covalency-reinforced oxygen evolution reaction catalyst[J]. Nat. Commun., 2015, 6: 8249.
doi: 10.1038/ncomms9249 pmid: 26354832 |
[30] |
Koo B, Kim K, Kim J K, Kwon H, Han J W, Jung W. Sr segregation in perovskite oxides: Why it happens and how it exists[J]. Joule, 2018, 2(8): 1476-1499.
doi: 10.1016/j.joule.2018.07.016 URL |
[31] |
Goldschmidt V M. Die Gesetze der Krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.
doi: 10.1007/BF01507527 URL |
[32] |
King G, Woodward P M. Cation ordering in perovskites[J]. J. Mater. Chem., 2010, 20(28): 5785-5796.
doi: 10.1039/b926757c URL |
[33] |
Ruddlesden S N, Popper P. The compound Sr3Ti2O7 and its structure[J]. Acta Cryst., 1958, 11(1): 54-55.
doi: 10.1107/S0365110X58000128 URL |
[34] |
Dylla M T, Kang S D, Snyder G J. Effect of two-dimensional crystal orbitals on fermi surfaces and electron transport in three-dimensional perovskite oxides[J]. Angew. Chem. Int. Ed., 2019, 58(17): 5503-5512.
doi: 10.1002/anie.201812230 pmid: 30589168 |
[35] |
Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sánchez F, Fontcuberta J. Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films[J]. Nat. Commun., 2012, 3: 1189.
doi: 10.1038/ncomms2189 pmid: 23149734 |
[36] |
Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat. Chem., 2011, 3(7): 546-550.
doi: 10.1038/nchem.1069 pmid: 21697876 |
[37] |
Lee Y L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy Environ. Sci., 2011, 4(10): 3966-3970.
doi: 10.1039/c1ee02032c URL |
[38] |
Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Zhou J G, Shao-Horn Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nat. Commun., 2013, 4: 2439.
doi: 10.1038/ncomms3439 pmid: 24042731 |
[39] |
Hong W T, Stoerzinger K A, Lee Y L, Giordano L, Grimaud A, Johnson A M, Hwang J, Crumlin E J, Yang W L, Shao-Horn Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides[J]. Energy Environ. Sci., 2017, 10(10): 2190-2200.
doi: 10.1039/C7EE02052J URL |
[40] |
Hong W T, Stoerzinger K A, Moritz B, Devereaux T P, Yang W L, Shao-Horn Y. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy[J]. J. Phys. Chem. C, 2015, 119(4): 2063-2072.
doi: 10.1021/jp511931y URL |
[41] |
Calle-Vallejo F, Inoglu N G, Su H Y, Martinez J I, Man I C, Koper M T M, Kitchin J R, Rossmeisl J. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides[J]. Chem. Sci., 2013, 4(3): 1245-1249.
doi: 10.1039/c2sc21601a URL |
[42] |
Gerischer H. Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach[J]. J. Phys. Chem., 1991, 95(3): 1356-1359.
doi: 10.1021/j100156a060 URL |
[43] |
Zaanen J, Sawatzky G A, Allen J W. Band gaps and electronic structure of transition-metal compounds[J]. Phys. Rev. Lett., 1985, 55(4): 418-421.
pmid: 10032345 |
[44] |
Portier J, Poizot P, Tarascon J M, Campet G, Subramanian M. Acid-base behavior of oxides and their electronic structure[J]. Solid State Sci., 2003, 5(5): 695-699.
doi: 10.1016/S1293-2558(03)00031-1 URL |
[45] |
Bockris J O, Otagawa T. The electrocatalysis of oxygen evolution on perovskites[J]. J. Electrochem. Soc., 1984, 131(2): 290-302.
doi: 10.1149/1.2115565 URL |
[46] |
Kumar V, Kumar R, Shukla D K, Gautam S, Chae K H, Kumar R. Electronic structure and electrical transport properties of LaCo1-xNixO3 (0≤ x ≤0.5)[J]. J. Appl. Phys., 2013, 114(7): 073704.
doi: 10.1063/1.4818448 URL |
[47] |
Diaz-Morales O, Raaijman S, Kortlever R, Kooyman P J, Wezendonk T, Gascon J, Fu W T, Koper M T M. Iridium-based double perovskites for efficient water oxidation in acid media[J]. Nat. Commun., 2016, 7: 12363.
doi: 10.1038/ncomms12363 pmid: 27498694 |
[48] |
Liu H, Ding X F, Wang L X, Ding D, Zhang S H, Yuan G L. Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst[J]. Electrochim. Acta, 2018, 259:1004-1010.
doi: 10.1016/j.electacta.2017.10.172 URL |
[49] |
Xu X M, Su C, Zhou W, Zhu Y L, Chen Y B, Shao Z P. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Sci., 2016, 3(2): 1500187.
doi: 10.1002/advs.201500187 URL |
[50] |
Miao Y F, Wang X T, Zhang H J, Zhang T Y, Wei N, Liu X M, Chen Y T, Chen J, Zhao Y X. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97.
doi: 10.1016/j.esci.2021.09.005 URL |
[51] |
Zeng J, Bi L Y, Cheng Y H, Xu B M, Jen A K Y. Self-ass-embled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability[J]. Nano Res. Energy, 2022, 1: e9120004.
doi: 10.26599/NRE.2022.9120004 URL |
[52] |
Wang H, Wang L, Luo Q S, Zhang J, Wang C T, Ge X, Zhang W, Xiao F S. Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons[J]. Chem. Synth., 2022, 2(1): 2.
doi: 10.20517/cs.2022.02 URL |
[53] |
Li Q, Wu J B, Wu T, Jin H R, Zhang N, Li J, Liang W X, Liu M L, Huang L, Zhou J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution[J]. Adv. Funct. Mater., 2021, 31(38): 2102002.
doi: 10.1002/adfm.202102002 URL |
[54] |
Jin C, Cao X C, Zhang L Y, Zhang C, Yang R Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. J. Power Sources, 2013, 241: 225-230.
doi: 10.1016/j.jpowsour.2013.04.116 URL |
[55] |
Yu L J, Xu N, Zhu T L, Xu Z L, Sun M Z, Geng D. La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst[J]. Int. J. Hydrogen Energy, 2020, 45(55): 30583-30591.
doi: 10.1016/j.ijhydene.2020.08.105 URL |
[56] |
Wang Z, Li M, Liang C H, Fan L Q, Han J N, Xiong Y P. Effect of morphology on the oxygen evolution reaction for La0.8Sr0.2Co0.2Fe0.8O3-δ electrochemical catalyst in alkaline media[J]. RSC Adv., 2016, 6(73): 69251-69256.
doi: 10.1039/C6RA14770D URL |
[57] | Flaschen S S. An aqueous synthesis of barium titanate[J]. J. Am. Chem. Soc., 1955, 77(23): 6194-6194. |
[58] |
Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R. Composition and shape control of single-crystalline Ba1-xSrxTiO3 (x=0-1) nanocrystals via a solvothermal route[J]. J. Cryst. Growth, 2008, 310(18): 4132-4137.
doi: 10.1016/j.jcrysgro.2008.04.039 URL |
[59] |
Kumada N, Kyoda T, Yonesaki Y, Takei T, Kinomura N. Preparation of KNbO3 by hydrothermal reaction[J]. Mater. Res. Bull., 2007, 42(10): 1856-1862.
doi: 10.1016/j.materresbull.2006.11.045 URL |
[60] |
Stoerzinger K A, Choi W S, Jeen H, Lee H N, Shao-Horn Y. Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films[J]. J. Phys. Chem. Lett., 2015, 6(3): 487-492.
doi: 10.1021/jz502692a pmid: 26261968 |
[61] |
Weber M L, Baeumer C, Mueller D N, Jin L, Jia C L, Bick D S, Waser R, Dittmann R, Valov I, Gunkel F. Ele-ctrolysis of water at atomically tailored epitaxial cobaltite surfaces[J]. Chem. Mater., 2019, 31(7): 2337-2346.
doi: 10.1021/acs.chemmater.8b04577 URL |
[62] |
Tang R B, Nie Y F, Kawasaki J K, Kuo D Y, Petretto G, Hautier G, Rignanese G M, Shen K M, Schlom D G, Suntivich J. Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy[J]. J. Mater. Chem. A, 2016, 4(18): 6831-6836.
doi: 10.1039/C5TA09530A URL |
[63] |
Wang L, Adiga P, Zhao J L, Samarakoon W S, Stoerzinger K A, Spurgeon S R, Matthews B E, Bowden M E, Sushko P V, Kaspar T C, Sterbinsky G E, Heald S M, Wang H, Wangoh L W, Wu J P, Guo E J, Qian H J, Wang J O, Varga T, Thevuthasan S, Feng Z X, Yang W L, Du Y G, Chambers S A. Understanding the electronic structure evolution of epitaxial LaNi1-xFexO3 thin films for water oxidation[J]. Nano Lett., 2021, 21(19): 8324-8331.
doi: 10.1021/acs.nanolett.1c02901 URL |
[64] |
Ni L S, Guo R T, Fang S S, Chen J, Gao J Q, Mei Y, Zhang S, Deng W T, Zou G Q, Hou H S, Ji X B. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode[J]. eScience, 2022, 2(1): 116-124.
doi: 10.1016/j.esci.2022.02.006 URL |
[65] |
Li B, Li Z, Wu X, Zhu Z L. Interface functionalization in inverted perovskite solar cells: From material perspective[J]. Nano Res. Energy, 2022, 1(1): e9120011.
doi: 10.26599/NRE.2022.9120011 URL |
[66] |
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.201000397 URL |
[67] |
Matsumoto Y, Sato E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction[J]. Mater. Chem. Phys., 1986, 14(5): 397-426.
doi: 10.1016/0254-0584(86)90045-3 URL |
[68] |
Kim J, Yin X, Tsao K C, Fang S H, Yang H. Ca2MN2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(42): 14646-14649.
doi: 10.1021/ja506254g URL |
[69] |
Duan Y, Sun S N, Xi S B, Ren X, Zhou Y, Zhang G L, Yang H T, Du Y H, Xu Z C J. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction[J]. Chem. Mater., 2017, 29(24): 10534-10541.
doi: 10.1021/acs.chemmater.7b04534 URL |
[70] |
Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.
doi: 10.1038/ncomms11053 pmid: 27006166 |
[71] |
Hua B, Li M, Pang W Y, Tang W Q, Zhao S L, Jin Z H, Zeng Y M, Amirkhiz B S, Luo J L. Activating p-blocking centers in perovskite for efficient water splitting[J]. Chem, 2018, 4(12): 2902-2916.
doi: 10.1016/j.chempr.2018.09.012 URL |
[72] |
Cao C, Shang C Y, Li X, Wang Y Y, Liu C X, Wang X Y, Zhou S M, Zeng J. Dimensionality control of electrocatalytic activity in perovskite nickelates[J]. Nano Lett., 2020, 20(4): 2837-2842.
doi: 10.1021/acs.nanolett.0c00553 pmid: 32207976 |
[73] |
Dai J, Zhu Y L, Zhong Y J, Miao J, Lin B W, Zhou W, Shao Z P. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing[J]. Adv. Mater. Interfaces, 2019, 6(1): 1801317.
doi: 10.1002/admi.201801317 URL |
[74] |
Zhou S M, Miao X B, Zhao X, Ma C, Qiu Y H, Hu Z P, Zhao J Y, Shi L, Zeng J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition[J]. Nat. Commun., 2016, 7: 11510.
doi: 10.1038/ncomms11510 pmid: 27187067 |
[75] |
Burke M S, Enman L J, Batchellor A S, Zou S H, Boett-cher S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.
doi: 10.1021/acs.chemmater.5b03148 URL |
[76] | Bockris J O, Otagawa T. Mechanism of oxygen evolution on perovskites[J]. J. Phys. Chem. C, 1983, 87(15): 2960-2971. |
[77] |
Grimaud A, Diaz-Morales O, Han B H, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 pmid: 28430191 |
[78] |
Yoo J S, Rong X, Liu Y S, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
doi: 10.1021/acscatal.8b00612 URL |
[79] |
Gao R Q, Deng M, Yan Q, Fang Z X, Li L C, Shen H Y, Chen Z F. Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction[J]. Small Methods, 2021, 5(12): 2100834.
doi: 10.1002/smtd.202100834 URL |
[80] |
Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16(9): 925-931.
doi: 10.1038/nmat4938 pmid: 28714982 |
[81] |
Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.
doi: 10.1021/jz501061n pmid: 26277818 |
[82] | Ouimet R J, Glenn J R, De Porcellinis D, Motz A R, Carmo M, Ayers K E. The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers[J]. ACS Catal., 2022, 12(10): 6159-6171. |
[83] |
Hubert M A, King L A, Jaramillo T F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers[J]. ACS Energy Lett., 2022, 7(1): 17-23.
doi: 10.1021/acsenergylett.1c01869 URL |
[84] |
Liu Y P, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021, 42(7): 1054-1077.
doi: 10.1016/S1872-2067(20)63722-6 URL |
[85] |
Wan G, Freeland J W, Kloppenburg J, Petretto G, Nelson J N, Kuo D Y, Sun C J, Wen J G, Diulus J T, Herman G S, Dong Y Q, Kou R H, Sun J Y, Chen S, Shen K M, Schlom D G, Rignanese G M, Hautier G, Fong D D, Feng Z X, Zhou H, Suntivich J. Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization[J]. Sci. Adv., 2021, 7(2): eabc7323.
doi: 10.1126/sciadv.abc7323 URL |
[86] |
Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Commun., 2018, 9: 5236.
doi: 10.1038/s41467-018-07678-w pmid: 30531797 |
[87] |
Yang L, Zhang K X, Chen H, Shi L, Liang X, Wang X Y, Liu Y P, Feng Q, Liu M J, Zou X X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation[J]. J. Energy Chem., 2022, 66: 619-627.
doi: 10.1016/j.jechem.2021.09.016 URL |
[88] |
Gao R Q, Zhang Q, Chen H, Chu X F, Li G D, Zou X X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings[J]. J. Energy Chem., 2020, 47: 291-298.
doi: 10.1016/j.jechem.2020.02.002 URL |
[89] |
Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515.
doi: 10.1038/s41929-018-0085-6 URL |
[90] |
Zhang Q, Chen H, Yang L, Liang X, Shi L, Feng Q, Zou Y C, Li G D, Zou X X. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts[J]. Chin. J. Catal., 2022, 43(3): 885-893.
doi: 10.1016/S1872-2067(21)63983-9 URL |
[91] | Liang X, Shi L, Liu Y P, Chen H, Si R, Yan W S, Zhang Q, Li G D, Yang L, Zou X X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions[J]. An-gew. Chem. Int. Ed., 2019, 58(23): 7631-7635. |
[92] |
Chen H, Shi L, Liang X, Wang L N, Asefa T, Zou X X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(44): 19654-19658.
doi: 10.1002/anie.202006756 URL |
[93] |
Liang X, Shi L, Cao R, Wan G, Yan W S, Chen H, Liu Y P, Zou X X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution[J]. Adv. Mater., 2020, 32(34): 2001430.
doi: 10.1002/adma.202001430 URL |
[94] |
Shi L, Chen H, Liang X, Liu Y P, Zou X X. Theoretical insights into nonprecious oxygen-evolution active sites in Ti-Ir-Based perovskite solid solution electrocatalysts[J]. J. Mater. Chem. A, 2020, 8(1): 218-223.
doi: 10.1039/C9TA10059H URL |
[95] |
Feng W Q, Chen H, Zhang Q, Gao R Q, Zou X X. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts[J]. Chin. J. Catal., 2020, 41(11): 1692-1697.
doi: 10.1016/S1872-2067(20)63628-2 URL |
[96] |
Zhang R H, Pearce P E, Pimenta V, Cabana J, Li H F, Dalla Corte D A, Abakumov A M, Rousse G, Giaume D, Deschamps M, Grimaud A. First example of protonation of ruddlesden-popper Sr2IrO4: A route to enhanced water oxidation catalysts[J]. Chem. Mater., 2020, 32(8): 3499-3509.
doi: 10.1021/acs.chemmater.0c00432 URL |
[97] |
Kim B J, Abbott D F, Cheng X, Fabbri E, Nachtegaal M, Bozza F, Castelli I E, Lebedev D, Schäublin R, Copéret C, Graule T, Marzari N, Schmidt T J. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide[J]. ACS Catal., 2017, 7(5): 3245-3256.
doi: 10.1021/acscatal.6b03171 URL |
[98] |
Retuerto M, Pascual L, Calle-Vallejo F, Ferrer P, Gianolio D, Pereira A G, García Á, Torrero J, Fernández-Díaz M T, Bencok P, Peña M A, Fierro J L G, Rojas S. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nat. Commun., 2019, 10: 2041.
doi: 10.1038/s41467-019-09791-w pmid: 31053713 |
[99] |
Hirai S, Ohno T, Uemura R, Maruyama T, Furunaka M, Fukunaga R, Chen W T, Suzuki H, Matsuda T, Yagi S. Ca1-xSrxRuO3 perovskite at the metal-insulator boundary as a highly active oxygen evolution catalyst[J]. J. Mater. Chem. A, 2019, 7(25): 15387-15394.
doi: 10.1039/C9TA03789F URL |
[100] |
Ji M W, Yang X, Chang S D, Chen W X, Wang J, He D S, Hu Y, Deng Q, Sun Y, Li B, Xi J Y, Yamada T, Zhang J T, Xiao H, Zhu C Z, Li J, Li Y D. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid[J]. Nano Res., 2022, 15(3): 1959-1965.
doi: 10.1007/s12274-021-3843-8 URL |
[101] |
Miao X B, Zhang L F, Wu L, Hu Z P, Shi L, Zhou S M. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nat. Commun., 2019, 10: 3809.
doi: 10.1038/s41467-019-11789-3 pmid: 31444337 |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 罗贤准, 陈晓虎, 李永新. 纳米电极上单纳米气泡的伏安分析和电催化[J]. 电化学(中英文), 2024, 30(10): 2414001-. |
[5] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[9] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[10] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[11] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[12] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[13] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[14] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[15] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||