[1] |
Ĉoriĉ I, Mercado B Q, Bill E, Vinyard D J, Holland P L. Binding of dinitrogen to an iron-sulfur-carbon site[J]. Nature, 2015, 526(7571): 96-99.
doi: 10.1038/nature15246
URL
|
[2] |
Jia H P, Quadrelli E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen[J]. Chem. Soc. Rev., 2014, 43(2): 547-564.
doi: 10.1039/C3CS60206K
URL
|
[3] |
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world[J]. Nat Geosci, 2008, 1(10): 636-639.
doi: 10.1038/ngeo325
URL
|
[4] |
Lv X W, Weng C C, Yuan Z Y. Ambient ammonia electrosynthesis: Current status, challenges, and perspectives[J]. ChemSusChem, 2020, 13(12): 3061-3078.
doi: 10.1002/cssc.202000670
URL
|
[5] |
Liu H Z. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge[J]. Chinese J. Catal., 2014, 35(10): 1619-1640.
doi: 10.1016/S1872-2067(14)60118-2
URL
|
[6] |
Wang W, Xu M G, Xu X M, Zhou W, Shao Z P. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting[J]. Angew. Chem. Int. Edit., 2020, 59(1): 136-152.
doi: 10.1002/anie.201900292
URL
|
[7] |
Reddy C V, Reddy I N, Harish V V N, Reddy K R, Shetti N P, Shim J, Aminabhavi T M. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles[J]. Chemosphere, 2019, 239: 124766.
doi: 10.1016/j.chemosphere.2019.124766
URL
|
[8] |
Kumaravel V, Bartlett J, Pillai S C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products[J]. ACS Energy Lett., 2020, 5(2): 486-519.
doi: 10.1021/acsenergylett.9b02585
URL
|
[9] |
Reddy C V, Reddy I N, Akkinepally B, Reddy K R, Shim J. Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode[J]. J. Alloy Compd., 2020, 814: 152349.
doi: 10.1016/j.jallcom.2019.152349
URL
|
[10] |
Liu D N, Wang J H, Bian S, Liu Q, Gao Y H, Wang X, Chu P K, Yu X F. Photoelectrochemical synthesis of ammonia with black phosphorus[J]. Adv. Funct. Mater., 2020, 30(24): 2002731.
doi: 10.1002/adfm.202002731
URL
|
[11] |
Vu M H, Nguyen C C, Do T O. Synergistic effect of Fe doping and plasmonic Au nanoparticles on W18O49 nano-rods for enhancing photoelectrochemical nitrogen reduction[J]. ACS Sustain. Chem. Eng., 2020, 8(32): 12321-12330.
doi: 10.1021/acssuschemeng.0c04662
URL
|
[12] |
Li M X, Lu Q J, Liu M L, Yin P, Wu C Y, Li H T, Zhang Y Y, Yao S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl. Mater. Inter., 2020, 12(34): 38266-38274.
doi: 10.1021/acsami.0c11894
URL
|
[13] |
Zhao J X, Zhang B P, Li Y, Yan L P, Wang S J. Optical and photocatalytic properties of TiO2/Ag-SiO2 nanocomposite thin films[J]. J. Alloy. Compd., 2012, 535: 21-26.
doi: 10.1016/j.jallcom.2012.04.089
URL
|
[14] |
Wang S J, Zhang B P. SPR propelled visible-active photo-catalysis on Au-dispersed Co3O4 films[J]. Appl. Catal. A-Gen., 2013, 467: 585-592.
doi: 10.1016/j.apcata.2013.07.021
URL
|
[15] |
Ren C L, Yang B F, Wu M, Xu J, Fu Z P, Lv Y, Guo T, Zhao Y X, Zhu C Q. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance[J]. J. Hazard. Mater., 2010, 182(1-3): 123-129.
doi: 10.1016/j.jhazmat.2010.05.141
URL
|
[16] |
Horiuchi Y, Kamei G, Saito M, Matsuoka M. Development of ruthenium-loaded alkaline-earth titanates as catalysts for ammonia synthesis[J]. Chem. Lett., 2013, 42(10): 1282-1284.
doi: 10.1246/cl.130574
URL
|
[17] |
Huang B M, Liu Y, Pang Q, Zhang X Y, Wang H T, Shen P K. Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering[J]. J. Mater.Chem. A, 2020, 8(42): 22251-22256.
|
[18] |
Selmi A, Mascot M, Jomni F, Carru J C. Investigation of interfacial dead layers parameters in Au/Ba0.85Sr0.15TiO3/Pt capacitor devices[J]. J. Alloy. Compd., 2020, 826: 154048.
doi: 10.1016/j.jallcom.2020.154048
URL
|
[19] |
Szafraniak B, Fušnik Ł, Xu J, Gao F, Brudnik A, Rydosz A. Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: A review[J]. Coatings, 2021, 11(2): 185.
doi: 10.3390/coatings11020185
URL
|
[20] |
Nadaud K, Borderon C, Gillard R, Fourn E, Renoud R, Gundel H W. Temperature stable BaSrTiO3 thin films suitable for microwave applications[J]. Thin Solid Films, 2015, 591: 90-96.
doi: 10.1016/j.tsf.2015.08.019
URL
|
[21] |
Zhao Y X, Shi R, Bian X A, Zhou C, Zhao Y F, Zhang S, Wu F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates?[J]. Adv. Sci., 2019, 6(8): 1802109.
doi: 10.1002/advs.201802109
URL
|
[22] |
Andersen S Z, Ĉoriĉ V, Yang S, Schwalbe J A, Nielander A C, McEnaney J M, Enemark-Rasmussen K, Baker J G, Singh A R, Rohr B A, Statt M J, Blair S J, Mezzavilla S, Kibsgaard J, Vesborg P C K, Cargnello M, Bent S F, Jaramillo T F, Stephens I E L, Nørskov J K, Chorkendorff I. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762): 504-508.
doi: 10.1038/s41586-019-1260-x
URL
|
[23] |
Rodrigues A, Bauer S, Baumbach T. Effect of post-annealing on the chemical state and crystalline structure of PLD Ba0.5Sr0.5TiO3 films analyzed by combined synchrotron X-ray diffraction and X-ray photoelectron spectroscopy[J]. Ceram. Int., 2018, 44(13): 16017-16024.
doi: 10.1016/j.ceramint.2018.06.038
URL
|
[24] |
Liao J X, Yang C R, Tian Z, Yang H G, Jin L. The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3-films[J]. J. Phys. D Appl. Phys., 2006, 39(11): 2473-2479.
doi: 10.1088/0022-3727/39/11/024
URL
|
[25] |
Bulushev D A, Yuranov I, Suvorova E I, Buffat P A, Kiwi-Minsker L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J]. J. Catal., 2004, 224(1): 8-17.
doi: 10.1016/j.jcat.2004.02.014
URL
|
[26] |
Vovk E I, Kalinkin A V, Smirnov M Y, Klembovskii I O, Bukhtiyarov V I. XPS study of stability and reactivity of oxidized Pt nanoparticles supported on TiO2[J]. J. Phys. Chem. C, 2017, 121(32): 17297-17304.
doi: 10.1021/acs.jpcc.7b04569
URL
|
[27] |
Li J J, Zhang M, Weng B, Chen J, Jia H P. Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation[J]. J. Alloy Compd., 2020, 849: 156634.
doi: 10.1016/j.jallcom.2020.156634
URL
|
[28] |
Vu M H, Sakar M, Hassanzadeh-Tabrizi S A, Do T O. Photo(electro)catalytic nitrogen fixation: Problems and possibilities[J]. Adv. Mater. Interfaces, 2019, 6(12): 1900091.
doi: 10.1002/admi.201900091
URL
|