[1] Ma Y Y(马元元), Guo Z W(郭昭薇), Wang Y G(王永刚), et al. The new application of battery-electrode reaction: decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry(电化学),2018,24(5):444-454.
[2] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
[3] Wang M Y, Wang Z, Gong X Z, et al. The intensification technologies to water electrolysis for hydrogen production - A review[J]. Renewable & Sustainable Energy Reviews, 2014, 29: 573-588.
[4] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44 (15): 5148-5180.
[5] Trancik J E. Back the renewables boom[J]. Nature, 2014, 507(7492): 300-302.
[6] Zhang L L(张玲玲), Dong S J(董绍俊). Developments of photo-assisted fuel cells[J]. Journal of Electrochemistry(电化学), 2016, 22(3): 219-230.
[7] Mallouk T E. Water electrolysis divide and conquer[J]. Nature Chemistry, 2013, 5(5): 362-363.
[8] Thomas C E. Fuel cell and battery electric vehicles compared[J]. International Journal of Hydrogen Energy, 2009, 34 (15): 6005-6020.
[9] Kreuter W, Hofmann H. Electrolysis: The important energy transformer in a world of sustainable energy[J]. International Journal of Hydrogen Energy, 1998, 23(8): 661-666.
[10] Leroy R L. Industrial water electrolysis-present and future[J]. International Journal of Hydrogen Energy, 1983, 8(6): 401-417.
[11] Jiao Y, Zheng Y, Jaroniec M T, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086.
[12] Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction[J]. Advanced Materials, 2016, 28(29): 6197-6206.
[13] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326.
[14] Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and non legacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502.
[15] Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes[J]. Journal of The Electrochemical Society, 2010, 157(11): B1529-B1536.
[16] Shinde S S, Sami A, Lee J H. Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se[J]. Journal of Materials Chemistry A, 2015, 3(24): 12810-12819.
[17] Hinnemann B, Moses P G, Bonde J, et al. Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309.
[18] Vrubel H, Moehl T, Graetzel M, et al. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction[J]. Chemical Communications, 2013, 49(79): 8985-8987.
[19] Yan H J, Jiao Y Q, Wu A P, et al. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range[J]. Chemical Communications, 2016, 52(61): 9530-9533.
[20] Quaino P, Juarez F, Santos E, et al. Volcano plots in hydrogen electrocatalysis-uses and abuses[J]. Beilstein Journal of Nanotechnology, 2014, 5: 846-854.
[21] Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1556-1592.
[22] Antolini E. Catalysts for direct ethanol fuel cells[J]. Journal of Power Sources, 2007, 170(1): 1-12.
[23] Li K, Li Y, Wang Y M, et al. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon[J]. Energy & Environmental Science, 2018, 11(5): 1232-1239.
[24] Wang J, Chen J W, Chen J D, et al. Designed synthesis of size-controlled Pt-Cu alloy nanoparticles encapsulated in carbon nanofibers and their high efficient electrocatalytic activity toward hydrogen evolution reaction[J]. Advanced Materials Interfaces, 2017, 4(12): 1700005.
[25] Tiwari J N, Sultan S, Myung C W, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nature Energy, 2018, 3(9): 773-782.
[26] Kim J, Kim H E, Lee H. Single-atom catalysts of precious metals for electrochemical reactions[J]. ChemSusChem, 2018, 11(1): 104-113.
[27] Cheng N C, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: 13638.
[28] Jiang B B, Liao F, Sun Y Y, et al. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template[J]. Nano-scale, 2017, 9(28): 10138-10144.
[29] Huang R J, Sun Z T, Chen S, et al. Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution[J]. Chemical Communications, 2017, 53(51): DOI: 10.1039/c7cc03643d.
[30] Wu Z X(吴则星), Wang J(王杰), Guo J P(郭军坡), et al. Recent progresses in molybdenum-based electrocatalysts for the hydrogen reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 194-204.
[31] Luo Z Y, Ouyang Y X, Zhang H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution[J]. Nature Communications, 2018, 9: 2120.
[32] Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813.
[33] Yang Q B, He Y, Zou C J, et al. Composite electrocatalyst MoxW1-xS2 nanosheets on carbon fiber paper for highly efficient hydrogen evolution reaction[J]. Journal of Solid State Electrochemistry, 2018, 22(10): 2969-2976.
[34] Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143 (1/2): 94-107.
[35] Liu P, Rodriguez J A. Catalysts for hydrogen evolution from the NiFe hydrogenase to the Ni2P(001) surface: The importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42): 14871-14878.
[36] Pan Y, Liu Y, Zhao J, et al. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(4): 1656-1665.
[37] Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25): 9267-9270.
[38] Chang J F, Li S T, Li G Q, et al. Monocrystalline Ni12P5 hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(25): 9755-9759.
[39] Chang J F, Li K, Wu Zv J, et al. Sulfur-doped nickel phosphide nanoplates arrays: a monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26303-26311.
[40] Popczun E J, Read C G, Roske C W, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles**[J]. Angewandte Chemie-International Edition, 2014, 53(21): 5427-5430.
[41] Chang J F, Ouyang Y X, Ge J J, et al. Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(26): 12353-12360.
[42] Zhao W T, Lu X Q, Selvaraj M, et al. MXP(M=Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction[J]. Nanoscale, 2018, 10(20): 9698-9706.
[43] Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review[J]. ACS Catalysis, 2016, 6(12): 8069-8097.
[44] Zhou X L, Jiang J, Ding T, et al. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nano-sheets for high-performance hydrogen evolution[J]. Nano-scale, 2014, 6(19): 11046-11051.
[45] Liu B, Zhao Y F, Peng H Q, et al. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution[J]. Advanced Materials, 2017, 29(19): 1606521.
[46] Fang L, Li W X, Guan Y X, et al. Tuning unique peapod-like Co(SxSe1-x)(2) nanoparticles for efficient overall water splitting[J]. Advanced Functional Materials, 2017, 27(24): 1701008.
[47] Deng S J, Zhong Y, Zeng Y X, et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/grapheene shell/core nanoflake arrays for efficient hydrogen evolution reaction[J]. Advanced Materials, 2017, 29(21): 1700748. |