[1] |
Bryant M A, Joa S L, Pemberton J E. Raman-scattering from monolayer films of thiophenol and 4-mercaptopyridine at Pt surfaces[J]. Langmuir, 1992, 8(3): 753-756.
doi: 10.1021/la00039a002
URL
|
[2] |
Diem T, Czajka B, Weber B, Regen S L. Spontaneous assembly of phospholipid monolayers via adsorption onto gold[J]. J. Am. Chem. Soc., 1986, 108(19): 6094-6095.
doi: 10.1021/ja00279a099
pmid: 22175407
|
[3] |
Finklea H O, Avery S, Lynch M, Furtsch T. Blocking oriented monolayers of alkyl mercaptans on gold electrodes[J]. Langmuir, 1987, 3(3): 409-413.
doi: 10.1021/la00075a024
URL
|
[4] |
Hubbard A T. Electrochemistry at well-characterized surfaces[J]. Chem. Rev., 1988, 88(4): 633-656.
doi: 10.1021/cr00086a004
URL
|
[5] |
Nuzzo R G, Zegarski B R, Dubois L H. Fundamental-studies of the chemisorption of organosulfur compounds on Au(111)- Implications for molecular self-assembly on gold surfaces[J]. J. Am. Chem. Soc., 1987, 109(3): 733-740.
doi: 10.1021/ja00237a017
URL
|
[6] |
Porter M D, Bright T B, Allara D L, Chidsey C E D. Spontaneously organized molecular assemblies. 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry[J]. J. Am. Chem. Soc., 1987, 109(12): 3559-3568.
doi: 10.1021/ja00246a011
URL
|
[7] |
Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chem. Soc. Rev., 1998, 27(4): 241-250.
doi: 10.1039/a827241z
URL
|
[8] |
Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. Lett., 1997, 78(9): 1667-1670.
doi: 10.1103/PhysRevLett.78.1667
URL
|
[9] |
Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
doi: 10.1038/nature08907
URL
|
[10] |
Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman-scattering[J]. J. Phys. Condens. Matter., 1992, 4(5): 1143-1212.
doi: 10.1088/0953-8984/4/5/001
URL
|
[11] |
Schlucker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angew. Chem. Int. Ed., 2014, 53(19): 4756-4795.
doi: 10.1002/anie.201205748
URL
|
[12] |
Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures[J]. J. Phys. Chem. B., 2002, 106(37): 9463-9483.
doi: 10.1021/jp0257449
URL
|
[13] |
Huang Y F, Wu D Y, Zhu H P, Zhao L B, Liu G K, Ren B, Tian Z Q. Surface-enhanced Raman spectroscopic study of p-aminothiophenol[J]. Phys. Chem. Chem. Phys., 2012, 14(24): 8485-8497.
doi: 10.1039/c2cp40558j
URL
|
[14] |
Hutchison J A, Centeno S P, Odaka H, Fukumura H, Hofkens J, Uji-I H. Subdiffraction limited, remote excitation of surface enhanced Raman scattering[J]. Nano Lett., 2009, 9(3): 995-1001.
doi: 10.1021/nl8030696
pmid: 19199757
|
[15] |
Villarreal E, Li G F G, Zhang Q F, Fu X Q, Wang H. Nanoscale surface curvature effects on ligand-nanoparticle interactions: A plasmon-enhanced spectroscopic study of thiolated ligand adsorption, desorption, and exchange on gold nanoparticles[J]. Nano Lett., 2017, 17(7): 4443-4452.
doi: 10.1021/acs.nanolett.7b01593
pmid: 28590743
|
[16] |
Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P, Natelson D. Simultaneous measurements of electronic conduction and Raman response in molecular junctions[J]. Nano Lett., 2008, 8(3): 919-924.
doi: 10.1021/nl073346h
URL
|
[17] |
Wu D Y, Zhang M, Zhao L B, Huang Y F, Ren B, Tian Z Q. Surface plasmon-enhanced photochemical reactions on noble metal nanostructures[J]. Sci. China Chem., 2015, 58(4): 574-585.
doi: 10.1007/s11426-015-5316-y
URL
|
[18] |
Huang Y F, Zhang M, Zhao L B, Feng J M, Wu D Y, Ren B, Tian Z Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J]. Angew. Chem. Int. Ed., 2014, 53(9): 2353-2357.
doi: 10.1002/anie.201310097
URL
|
[19] |
Jiang R, Zhang M, Qian S L, Yan F, Pei L Q, Jin S, Zhao L B, Wu D Y, Tian Z Q. Photoinduced surface catalytic coupling reactions of aminothiophenol derivatives investigated by SERS and DFT[J]. J. Phys. Chem. C., 2016, 120(30): 16427-16436.
doi: 10.1021/acs.jpcc.6b04638
URL
|
[20] |
Wu D Y, Zhao L B, Liu X M, Huang R, Huang Y F, Ren B, Tian Z Q. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS[J]. Chem. Commun., 2011, 47(9): 2520-2522.
doi: 10.1039/c0cc05302c
URL
|
[21] |
Zhan C, Wang Z Y, Zhang X G, Chen X J, Huang Y F, Hu S, Li J F, Wu D Y, Moskovits M, Tian Z Q. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes[J]. J. Am. Chem. Soc., 2019, 141(20): 8053-8057.
doi: 10.1021/jacs.9b02518
URL
|
[22] |
Patrito E M, Cometto F P, Paredes-Olivera P. Quantum mechanical investigation of thiourea adsorption on Ag(111) considering electric field and solvent effects[J]. J. Phys. Chem. B., 2004, 108(40): 15755-15769.
doi: 10.1021/jp048278r
URL
|
[23] |
Lukkari J, Kleemola K, Meretoja M, Ollonqvist T, Kankare J. Electrochemical post-self-assembly transformation of 4-aminothiophenol monolayers on gold electrodes[J]. Langmuir, 1998, 14(7): 1705-1715.
doi: 10.1021/la970931x
URL
|
[24] |
Raj C R, Kitamura F, Ohsaka T. Electrochemical and in situ FTIR spectroscopic investigation on the electrochemical transformation of 4-aminothiophenol on a gold electrode in neutral solution[J]. Langmuir, 2001, 17(23): 7378-7386.
doi: 10.1021/la010746q
URL
|
[25] |
Wu D Y, Li J F, Ren B, Tian Z Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chem. Soc. Rev., 2008, 37(5): 1025-1041.
doi: 10.1039/b707872m
URL
|
[26] |
Ling Y(凌云), Tang J(汤儆), Liu G K(刘国坤), Zong C(宗铖). Transient electrochemical surface-enhanced Raman spectroscopic study in electrochemical reduction of p-nitrothiophenol[J]. J. Electrochem.(电化学), 2019, 25(6): 731-739.
|
[27] |
Yuan Y X(袁亚仙), Yang F Z(杨凤珠), Liu W(刘伟), Wei P J(韦萍洁), Yao J L(姚建林), Gu R A(顾仁敖). Electrochemical SERS studies on the adsorption of benzoimidazole and derivative in nonaqueous solution[J]. J. Electrochem.(电化学), 2010, 16(3): 343-349.
|
[28] |
Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nat. Phys. Sci., 1973, 241(105): 20-22.
doi: 10.1038/physci241020a0
URL
|
[29] |
Carvalhal R T, Freire R S, Kubota L T. Polycrystalline gold electrodes: A comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation[J]. Electroanalysis, 2005, 17(14): 1251-1259.
doi: 10.1002/elan.200403224
URL
|
[30] |
Sun R(孙如), Li S J(李淑瑾), Yao J L(姚建林), Gu R A(顾仁敖). Surface enhanced Raman spectroscopy and theoretical studies on the electrochemical transformation processes of 4-aminothiophenol on Au electrode[J]. Acta Chim. Sinica.(化学学报), 2007, 65(17): 1741-1745.
|
[31] |
Zhang P(张普), Wei Y(卫怡), Cai J(蔡俊), Chen Y X(陈艳霞), Tian Z Q(田中群). Nonlinear Stark effect observed for carbon monoxide chemisorbed on gold core/palladium shell nanoparticle film electrodes, using in situ surface-enhanced Raman spectroscopy[J]. Chin. J. Catal.(催化学报), 2016, 37(7): 1156-1165.
|
[32] |
Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem., 1979, 101(1): 19-28.
doi: 10.1016/S0022-0728(79)80075-3
URL
|
[33] |
Andrieux C P, Legorande A, Saveant J M. Electron-Transfer and bond breaking - Examples of passage from a sequential to a concerted mechanism in the electrochemical reductive cleavage of Arylmethyl halides[J]. J. Am. Chem. Soc., 1992, 114(17): 6892-6904.
doi: 10.1021/ja00043a039
URL
|