电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 84-95. doi: 10.13208/j.electrochem.181205
赵拓1,2, 罗二桂1,2, 王显1,2, 葛君杰1,2,*(), 刘长鹏1,2,*(), 邢巍1,2,*()
收稿日期:
2018-12-05
修回日期:
2019-01-21
出版日期:
2020-02-28
发布日期:
2020-02-28
通讯作者:
葛君杰,刘长鹏,邢巍
E-mail:gejj@ciac.ac.cn;liuchp@ciac.ac.cn;xingwei@ciac.ac.cn
基金资助:
Tuo ZHAO1,2, Er-gui LUO1,2, Xian WANG1,2, Jun-jie GE1,2,*(), Chang-peng LIU1,2,*(), Wei XING1,2,*()
Received:
2018-12-05
Revised:
2019-01-21
Published:
2020-02-28
Online:
2020-02-28
Contact:
Jun-jie GE, Chang-peng LIU, Wei XING
E-mail:gejj@ciac.ac.cn;liuchp@ciac.ac.cn;xingwei@ciac.ac.cn
摘要:
在质子交换膜燃料电池(PEMFC)中,由于阴极氧还原反应(ORR)速率缓慢,因此开发高效的ORR催化剂是实现燃料电池商业化的关键. 世界各地的研究人员在提高催化剂活性和耐久性方面做出了不懈的努力. 目前,铂基催化剂仍然是商业应用上的首选,为开发实用的低铂氧还原催化剂,研究人员开展了大量的研究. 本文说明了ORR反应遇到的挑战,并介绍了近年来铂基氧还原催化剂的研究进展,具体包括ORR机理、铂核壳结构、一维纳米Pt催化剂和其他的代表性工作.
中图分类号:
赵拓, 罗二桂, 王显, 葛君杰, 刘长鹏, 邢巍. 铂基氧还原催化剂在活性和稳定性方面的挑战[J]. 电化学(中英文), 2020, 26(1): 84-95.
Tuo ZHAO, Er-gui LUO, Xian WANG, Jun-jie GE, Chang-peng LIU, Wei XING. Challenges in the Activity and Stability of Pt-Based Catalysts toward ORR[J]. Journal of Electrochemistry, 2020, 26(1): 84-95.
[1] |
Kibsgaard J, Gorlin Y, Chen Z B , et al. Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012,134(18):7758-7765.
doi: 10.1021/ja2120162 URL pmid: 22500676 |
[2] | Zhang B W( 张斌伟), Wang Y X( 王云晓), Xu Y F( 徐燕裴 ), et al. Designing Pt-skin of Pt-based bimetallic electrocatalysts for oxygen reduction reaction[J]. Journal of Electrochemistry( 电化学), 2017,23(2):102-109. |
[3] | Ma T Y, Zheng Y, Dai S , et al. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts[J]. Journal of Materials Chemistry A, 2014,2(23):8676-8682. |
[4] | Norskov J K, Rossmeisl J, Logadottir A , et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004,108(46):17886-17892. |
[5] |
Wu G, More K L, Johnston C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
doi: 10.1126/science.1200832 URL pmid: 21512028 |
[6] |
Kongkanand A, Mathias M F . The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. Journal of Physical Chemistry Letters, 2016,7(7):1127-1137.
doi: 10.1021/acs.jpclett.6b00216 URL pmid: 26961326 |
[7] | Eslamibidgoli M J, Huang J, Kadyk T , et al. How theory and simulation can drive fuel cell electrocatalysis[J]. Nano Energy, 2016,29:334-361. |
[8] | Schmidt T J, Paulus U A, Gasteiger H A , et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions[J]. Journal of Electroanalytical Chemistry, 2001,508(1/2):41-47. |
[9] | Hansen H A, Viswanathan V, Norskov J K . Unifying kinetic and thermodynamic analysis of 2 e- and 4 e- reduction of oxygen on metal surfaces [J]. Journal of Physical Chemistry C, 2014,118(13):6706-6718. |
[10] | Holton O T, Stevenson J W . The role of platinum in proton exchange membrane fuel cells evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell[J]. Platinum Metals Review, 2013,57(4):259-271. |
[11] | Knozinge H, Kochloef K, Buhl H . Dehydration of alcohols on alumina reactivity and mechanism[J]. Journal of Catalysis, 1972,24:57-116. |
[12] |
Cheng J, Hu P . Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis[J]. Journal of the American Chemical Society, 2008,130(33):10868-10869.
doi: 10.1021/ja803555g URL pmid: 18651740 |
[13] | Bligaard T, Norskov J K, Dahl S , et al. The bronsted-evans-polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004,224(1):206-217. |
[14] | Campbell C T . Bimetallic surface chemistry[J]. Annual Review of Physical Chemistry, 1990,41:775-837. |
[15] | Rodriguez J . Physical and chemical properties of bimetallic surfaces[J]. Surface Science Reports, 1996,24(7/8):223-287. |
[16] |
Schalow T, Brandt B, Starr D E , et al. Size-dependent oxidation mechanism of supported Pd nanoparticles[J]. Angewandte Chemie International Edition, 2006,45(22):3693-3697.
doi: 10.1002/anie.200504253 URL pmid: 16639764 |
[17] | Wieckowski A, Savinova E R, Vayenas C G. Catalysis and electrocatalysis at nanoparticle surfaces[M]. CRC Press: 2003. |
[18] | Horsley J . A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide[J]. Journal of the American Chemical Society, 1979,101(11):2870-2874. |
[19] |
Kitchin J R, Norskov J K, Barteau M A , et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Physical Review Letters, 2004,93(15):156801.
doi: 10.1103/PhysRevLett.93.156801 URL pmid: 15524919 |
[20] |
Bligaard T, Norskov J K . Ligand effects in heterogeneous catalysis and electrochemistry[J]. Electrochim Acta, 2007,52(18):5512-5516.
doi: 10.1021/ja057395c URL pmid: 16536548 |
[21] |
Wu J B, Qi L, You H J , et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. Journal of the American Chemical Society, 2012,134(29):11880-11883.
doi: 10.1021/ja303950v URL pmid: 22738173 |
[22] |
Stamenkovic V, Mun B S, Mayrhofer K J , et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie International Edition, 45(1):2897-2901.
doi: 10.1002/anie.200504386 URL pmid: 16596688 |
[23] | Tripkovic V, Skulason E, Siahrostami S , et al. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations[J]. Electrochimica Acta, 2010,55(27):7975-7981. |
[24] |
Stamenkovic V R, Mun B S, Arenz M , et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007,6(3):241-247.
doi: 10.1038/nmat1840 URL pmid: 17310139 |
[25] |
Oezaslan M, Heggen M, Strasser P . Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale[J]. Journal of the American Chemical Society, 2012,134(1):514-524.
doi: 10.1021/ja2088162 URL pmid: 22129031 |
[26] | Ou L H( 欧利辉), Cheng S L( 陈胜利 ). A DFT calculation screening of Pt-based bimetallic catalysts for oxygen reduction[J]. Journal of Electrochemistry( 电化学), 2013,19(1):1-5. |
[27] |
Chen S, Ferreira P J, Sheng W , et al. Enhanced activity for oxygen reduction reaction on “Pt3CO” nanoparticles: Direct evidence of percolated and sandwich-segregation structures[J]. Journal of the American Chemical Society, 2008,130(42):13818-13819.
doi: 10.1021/ja802513y URL pmid: 18811156 |
[28] |
Yu Z Q, Zhang J L, Liu Z Y , et al. Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C, 2012,116(37):19877-19885.
doi: 10.1021/jp306179d URL pmid: 24416456 |
[29] |
Dutta I, Carpenter M K, Balogh M P , et al. Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst[J]. Journal of Physical Chemistry C, 2010,114(39):16309-16320.
doi: 10.1021/jp106042z URL pmid: 23807900 |
[30] | Wang R Y, Xu C X, Bi X X , et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts[J]. Energy & Environmental Science, 2012,5(1):5281-5286. |
[31] |
Shui J I, Chen C, Li J C M . Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction[J]. Advanced Functional Materials, 2011,21(17):3357-3362.
doi: 10.1002/adfm.201100723 URL |
[32] |
Wang D S, Zhao P, Li Y D . General preparation for Ptbased alloy nanoporous nanoparticles as potential nanocatalysts[J]. Scientific Reports, 2011, 1: 37:
doi: 10.1038/srep00037 URL pmid: 22355556 |
[33] |
Xiong Y L, Shan H, Zhou Z N , et al. Tuning surface structure and strain in Pd-Pt core-shell nanocrystals for enhanced electrocatalytic oxygen reduction[J]. Small, 2017,13(7):1603423.
doi: 10.1002/smll.201603423 URL pmid: 27860266 |
[34] | Chen Y F, Fu G T, Li Y Y , et al. L-Glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst[J]. Journal of Materials Chemistry A, 2017,5(8):3774-3779. |
[35] |
Sasaki K, Naohara H, Cai Y , et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes[J]. Angewandte Chemie International Edition, 2010,49(46):8602-8607.
doi: 10.1002/anie.201004287 URL pmid: 20931587 |
[36] |
Wang C, Chi M F, Li D G , et al. Design and synjournal of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. Journal of the American Chemical Society, 2011,133(36):14396-14403.
doi: 10.1021/ja2047655 URL |
[37] | Lee K S, Park H Y, Ham H C , et al. Reversible surface segregation of Pt in a Pt3Au/C catalyst and its effect on the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2013,117(18):9164-9170. |
[38] | Li J, Yin H M, Li X B , et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction[J]. Nature Energy, 2017,2(8):17111. |
[39] | Khateeb S, Guerreo S, Su D , et al. Fuel cell performance of palladium-platinum core-shell electrocatalysts Synthesized in gram-scale batches[J]. Journal of The Electrochemial Society, 2016,163(7):F708-F713. |
[40] |
Li J R, Xi Z, Pan Y T , et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. Journal of the American Chemical Society, 2018,140(8):2926-2932.
doi: 10.1021/jacs.7b12829 URL pmid: 29411604 |
[41] |
Bu L Z, Zhang N, Guo S J , et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016,354(6318):1410-1414.
doi: 10.1126/science.aah6133 URL pmid: 27980207 |
[42] |
Koh S, Strasser P . Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. Journal of the American Chemical Society, 2007,129(42):12624-12625.
doi: 10.1021/ja0742784 URL pmid: 17910452 |
[43] |
Beermann V, Gocyla M, Willinger E , et al. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability[J]. Nano Letters, 2016,16(3):1719-1725.
doi: 10.1021/acs.nanolett.5b04636 URL pmid: 26854940 |
[44] |
Bu L Z, Shao Q, Bin E , et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis[J]. Journal of the American Chemical Society, 2017,139(28):9576-9582.
doi: 10.1021/jacs.7b03510 URL pmid: 28657302 |
[45] | Xu Q F, Chen W L, Yan Y C , et al. Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction[J]. Science Bulletin, 2018,63(8):494-501. |
[46] |
Cademartiri L, Ozin G A . Ultrathin nanowires a materials chemistry perspective[J]. Advanced Materials, 2009,21(9):1013-1020.
doi: 10.1016/0277-5379(85)90284-6 URL pmid: 4065174 |
[47] | Koenigsmann C, Scofield M E, Liu H , et al. Designing enhanced one-dimensional electrocatalysts for the oxygen reduction reaction: Probing size- and composition-dependent electrocatalytic behavior in noble metal nanowires[J]. Journal of Physical Chemistry Letters, 2012,3(22):3385-3398. |
[48] | Zhou X M, Yang H C, Wang C X , et al. Visible light induced photocatalytic degradation rhodamine B on one-dimensional iron oxide particles[J]. Journal of Physical Chemistry C, 2010,114(40):17051-17061. |
[49] |
Liu W, Herrmann A K, Bigall N C , et al. Noble metal aerogels-synjournal, characterization, and application as electrocatalysts[J]. Accounts of Chemical Research, 2015,48(2):154-162.
doi: 10.1021/ar500237c URL pmid: 25611348 |
[50] |
Liu W, Rodriguez P, Borchardt L , et al. Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(37):9849-9852.
doi: 10.1002/anie.201303109 URL pmid: 23877963 |
[51] |
Zhang Z Y, Li M J, Wu Z L , et al. Ultra-thin PtFe-nano-wires as durable electrocatalysts for fuel cells[J]. Nano-technology, 2011,22(1):015602.
doi: 10.1088/0957-4484/22/1/015602 URL pmid: 21135465 |
[52] | Higgins D C, Ye S, Knights S , et al. Highly durable platinum-cobalt nanowires by microwave irradiation as oxygen reduction catalyst for PEM fuel cell[J]. Electrochemical and Solid State Letters, 2012,15(6):B83-B85. |
[53] |
Guo S J, Li D G, Zhu H Y , et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(12):3465-3468.
doi: 10.1002/anie.201209871 URL pmid: 23420804 |
[54] |
Jiang K Z, Zhao D D, Guo S J , et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires[J]. Science Advances, 2017,3(2):e1601705.
doi: 10.1126/sciadv.1601705 URL pmid: 28275723 |
[55] |
Liu L F, Pippel E . Low-platinum-content quaternary PtCuCoNi nanotubes with markedly enhanced oxygen reduction activity[J]. Angewandte Chemie International Edition, 2011,50(12):2729-2733.
doi: 10.1002/anie.201006644 URL pmid: 21387476 |
[56] |
Li M F, Zhao Z P, Cheng T , et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016,354(6318):1414-1419.
doi: 10.1126/science.aaf9050 URL pmid: 27856847 |
[57] | Dai Y, Ou L H, Liang W , et al. Efficient and superiorly durable Pt-lean electrocatalysts of Pt-W alloys for the oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2011,115(5):2162-2168. |
[58] |
Stamenkovic V R, Fowler B, Mun B S , et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007,315(5811):493-497.
doi: 10.1126/science.1135941 URL pmid: 17218494 |
[59] | Fowler B, Lucas C A, Omer A , et al. Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles[J]. Electrochimica Acta, 2008,53(21):6076-6080. |
[60] |
Yang X, Roling L T, Vara M , et al. Synjournal and characterization of Pt-Ag alloy nanocages with enhanced activity and durability toward oxygen reduction[J]. Nano Letters, 2016,16(10):6644-6649.
doi: 10.1021/acs.nanolett.6b03395 URL pmid: 27661446 |
[61] |
Choi S I, Xie S, Shao M , et al. Synjournal and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction[J]. Nano Letters, 2013,13(7):3420-3425.
doi: 10.1021/nl401881z URL pmid: 23786155 |
[62] |
Carpenter M K, Moylan T E, Kukreja R S , et al. Solvo-thermal synjournal of platinum alloy nanoparticles for oxygen reduction electrocatalysis[J]. Journal of the American Chemical Society, 2012,134(20):8535-8542.
doi: 10.1021/ja300756y URL pmid: 22524269 |
[63] |
Chen C, Kang Y J, Huo Z Y , et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014,343(6177):1339-1343.
doi: 10.1126/science.1249061 URL pmid: 24578531 |
[64] | Schmies H, Hornberger E, Anke B , et al. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts[J]. Chemistry of Materials, 2018,30(20):7287-7295. |
[65] |
Beermann V, Gocyla M, Kuehl S , et al. Tuning the electrocatalytic oxygen reduction reaction activity and stability of shape-controlled Pt-Ni nanoparticles by thermal annealing elucidating the surface atomic structural and compositional changes[J]. Journal of the American Chemical Society, 2017,139(46):16536-16547.
doi: 10.1021/jacs.7b06846 URL pmid: 29019692 |
[66] |
Becknell N, Son Y, Kim D , et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts[J]. Journal of the American Chemical Society, 2017,139(34):11678-11681.
doi: 10.1021/jacs.7b05584 URL pmid: 28787139 |
[67] |
Ding J B, Bu L Z, Guo S J , et al. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis[J]. Nano Letters, 2016,16(4):2762-2767.
doi: 10.1021/acs.nanolett.6b00471 URL pmid: 26950511 |
[1] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[2] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[3] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[4] | 王健, 轩文辉, 何倩, 蒋金霞, 周圆圆, 聂瑶, 廖强, 邵敏华, 丁炜, 魏子栋. 类超晶格结构:有序性传质赋予燃料电池高品质输出性能[J]. 电化学(中英文), 2023, 29(1): 2215003-. |
[5] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[6] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[7] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[8] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[9] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[10] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[11] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[12] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[13] | 刘芳艳, 张倩, 李玥琨, 黄丰, 王梦晔. Co1-xS-MnS@CNTs/CNFs的制备及其氧还原电催化性能[J]. 电化学(中英文), 2021, 27(3): 301-310. |
[14] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[15] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||