电化学(中英文) ›› 2020, Vol. 26 ›› Issue (6): 890-899. doi: 10.13208/j.electrochem.190716
邢逸飞1, 李娜1, 温晓芳1, 韩宏彦2, 崔敏1, 张聪1, 任聚杰1,*(), 籍雪平3,*()
收稿日期:
2019-07-16
修回日期:
2019-12-13
出版日期:
2020-12-28
发布日期:
2019-12-16
通讯作者:
任聚杰,籍雪平
E-mail:jujeren@163.com;xuepingji@126.com
基金资助:
XING Yi-fei1, LI Na1, WEN Xiao-fang1, HAN Hong-yan2, CUI Min1, ZHANG Cong1, REN Ju-jie1,*(), JI Xue-ping3,*()
Received:
2019-07-16
Revised:
2019-12-13
Published:
2020-12-28
Online:
2019-12-16
Contact:
REN Ju-jie,JI Xue-ping
E-mail:jujeren@163.com;xuepingji@126.com
摘要:
本文构建了基于取代型多酸与还原氧化石墨烯(RGO)复合材料的多巴胺电化学传感器. 首先,通过水热法合成了十一钨镍杂多钨硅酸盐K2H2SiW11NiO39·xH2O(SiW11Ni),利用Hummers法与化学还原法合成了还原氧化石墨烯. 并使用SEM、XRD与FTIR等测试方法对材料进行了表征. 将SiW11Ni与RGO按照一定的比例滴涂在玻碳电极表面,以便成功构建出传感界面(SiW11Ni-RGO/GCE). 然后,采用电化学阻抗法与循环伏安法等方法研究了传感界面的电化学性质. 优化实验条件后,利用该传感器通过循环伏安法对多巴胺进行定量检测,并且氧化过程展现出较为良好的性能. 其检出限为3.2 μmol·L -1(S/N = 3),灵敏度为9.71 μA·(μmol·L -1·cm -2) -1,线性范围为10 ~ 80 μmol·L -1. 同时,所制备的传感器表现出良好的稳定性与抗干扰能力. 该传感器修饰过程简单、成本低、电化学性能良好,为多酸在化学传感领域的应用提供新思路.
中图分类号:
邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899.
XING Yi-fei, LI Na, WEN Xiao-fang, HAN Hong-yan, CUI Min, ZHANG Cong, REN Ju-jie, JI Xue-ping. Electrochemical Determination of Dopamine Based on Metal-Substituted Polyoxometalates Composites[J]. Journal of Electrochemistry, 2020, 26(6): 890-899.
表1
不同电化学传感器检测DA的对比
Electrode | Detection range/(μmol·L-1) | LOD/(μmol·L-1) | Sensitivity | Ref. |
---|---|---|---|---|
ERGO/GCE | 0.5~60 | 0.5 | 0.482 μA·(μmol·L-1)-1 | [ |
pHQ/AuNPs/NF | 0.1~10 | 0.0419 | 6.663 μA·(μmol·L-1)-1 | [ |
rGO-Co3O4/GCE | 1~30 | 0.277 | 0.389 μA·(μmol·L-1·cm-2)-1 | [ |
BDD-NEAs | 0.1~20 | 0.1 | 0.0597 μA·(μmol·L-1·cm-2)-1 | [ |
GO/GCE | 1~15 | 0.27 | 0.5545 μA·(μmol·L-1)-1 | [ |
Co[PW12O38]·5H2O/CPE | 8~30 | 5.4 | 0.039 μA·(μmol·L-1)-1 | [ |
SiW11Ni-RGO/GCE | 10~80 | 3.2 | 0.686 μA·(μmol·L-1)-1 | This work |
9.71 μA·(μmol·L-1·cm-2)-1 |
[1] |
Jennings K A . A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin[J]. ACS Chemical Neuroscience, 2013,4(5):704-714.
doi: 10.1021/cn4000605 URL pmid: 23627553 |
[2] |
Biosa A, Arduini I, Soriano M E , et al. Dopamine oxidation products as mitochondrial endotoxins, a potential molecular mechanism for preferential neurodegeneration in Parkinson's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2849-2858.
doi: 10.1021/acschemneuro.8b00276 URL pmid: 29906101 |
[3] |
Nam E, Derrick J S, Lee S , et al. Regulatory activities of dopamine and its derivatives toward metal-free and metal-induced amyloid-β aggregation, oxidative stress, and inflammation in Alzheimer's disease[J]. ACS Chemical Neuroscience, 2018,9(11):2655-2666.
doi: 10.1021/acschemneuro.8b00122 URL pmid: 29782798 |
[4] |
Clark L F, Kodadek T . The immune system and neuroinflammation as potential sources of blood-based biomarkers for Alzheimer's disease, Parkinson's disease, and Huntington's disease[J]. ACS Chemical Neuroscience, 2016,7(5):520-527.
doi: 10.1021/acschemneuro.6b00042 URL pmid: 27046268 |
[5] |
Yorgason J T, Jones S R, España R A . Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection[J]. Neuroscience, 2011,182:125-132.
URL pmid: 21402130 |
[6] |
Verlinden H . Dopamine signalling in locusts and other insects[J]. Insect Biochemistry and Molecular Biology, 2018,97:40-52.
doi: 10.1016/j.ibmb.2018.04.005 URL pmid: 29680287 |
[7] |
Lakkappa N, Krishnamurthy P T, Yamjala K , et al. Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018,149:457-464.
doi: 10.1016/j.jpba.2017.11.043 URL pmid: 29169114 |
[8] | Sun Y L, Lin Y N, Ding C F , et al. An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica@graphite oxide polymers[J]. Sensors and Actuators B: Chemical, 2018,257:312-323. |
[9] |
De Benedetto G E, Fico D, Pennetta A , et al. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014,98:266-270.
doi: 10.1016/j.jpba.2014.05.039 URL pmid: 24971521 |
[10] | Diab N, Morales D M, Andronescu C , et al. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine[J]. Sensors and Actuators B: Chemical, 2019,285:17-23. |
[11] | Jiao J, Zuo J W, Pang H J , et al. A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes[J]. Journal of Electroanalytical Chemistry, 2018,827:103-111. |
[12] | Müller A, Peters F, Pope M T , et al. Polyoxometalates: Very large clusters nanoscale magnets[J]. Chemical Reviews, 1998,98(1):239-272. |
[13] | Teng D( 滕达), Wang Q( 王庆), Li N( 李娜 ), et al. Synjournal and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science( 分子科学学报), 2019,35(2):148-154. |
[14] | Zhang L, Li S B, Zhang Z F , et al. Facile fabrication of reduced graphene oxide and Keggin-type polyoxometalates nanocomposite film for high performance electrocatalytic oxidation of nitrite[J]. Journal of Electroanalytical Chemistry, 2017,807:97-103. |
[15] | Zhu D, Guo D X, Zhang L L , et al. Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology[J]. Sensors and Actuators B: Chemical, 2019,281:893-904. |
[16] | Ensafi A A, Gorgabi-Khorzoughi M, Rezaei B , et al. Electrochemical behavior of polyoxometalates decorated on poly diallyl dimethyl ammonium chloride-MWCNTs: A highly selective electrochemical sensor for determination of guanine and adenine[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,78:56-64. |
[17] | Xing R M, Tong L Y, Zhao X Y , et al. Rapid and sensitive electrochemical detection of myricetin based on polyoxometalates/SnO2/gold nanoparticles ternary nanocomposite film electrode[J]. Sensors and Actuators B: Chemical, 2019,283:35-41. |
[18] |
Pang Y H, Zhang Y, Sun X L , et al. Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode[J]. Talanta, 2019,192:387-394.
doi: 10.1016/j.talanta.2018.08.042 URL pmid: 30348407 |
[19] |
Zhang X, Wu L, Zhou J W , et al. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2015,742:97-103.
doi: 10.1016/j.jelechem.2015.02.006 URL |
[20] |
Gao W, Tjiu W W, Wei J , et al. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide-Multiwalled carbon nanotube film modified glass carbon electrode[J]. Talanta, 2014,120:484-490.
doi: 10.1016/j.talanta.2013.12.012 URL |
[21] |
Liu Y, Huang Z, Xie Q J , et al. Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)[J]. Sensors and Actuators B: Chemical, 2013,188:894-901.
doi: 10.1016/j.snb.2013.07.113 URL |
[22] |
Prashanth S N, Teradal N L, Seetharamappa J , et al. Fabrification of electroreduced graphene oxide - bentonite sodium composite modified electrode and its sensing application for linezolid[J]. Electrochimica Acta, 2014,133:49-56.
doi: 10.1016/j.electacta.2014.04.022 URL |
[23] |
Li Z, Huang Y, Chen L , et al. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film[J]. Sensors and Actuators B: Chemical, 2013,181:280-287.
doi: 10.1016/j.snb.2013.01.072 URL |
[24] | Ma R H( 马荣华), Liu C T( 刘春涛), Qu L Y( 瞿伦玉 ). Synjournal, characterization and electrochemical behavior of iron substituted tungstosilicates positional isomer[J]. Chinese Journal of Inorganic Chemistry( 无机化学学报), 2001,17(1):143-148. |
[25] |
Albers R F, Bini R A, Souza J B , et al. A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials[J]. Carbon, 2019,143:73-84.
doi: 10.1016/j.carbon.2018.10.087 URL |
[26] |
Sun J H, Bai S L, Tian Y , et al. Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties[J]. Sensors and Actuators B: Chemical, 2018,257:29-36.
doi: 10.1016/j.snb.2017.10.015 URL |
[27] | Ma R H( 马荣华), Han Z Q( 韩泽群 ). Preparation and adsorption properties of β3-SiW11Ni/GO composites for methylene blue[J]. Chemical Reagents( 化学试剂), 2018,40(3):203-206. |
[28] |
Zhao H Y, Ji X P, Wang B B , et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection[J]. Biosensors and Bioelectronics, 2015,65:23-30.
doi: 10.1016/j.bios.2014.10.007 URL pmid: 25461134 |
[29] |
Zhang Z X, Wang X L, Yang X R . A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics[J]. Analyst, 2011,136(23):4960-4965.
doi: 10.1039/c1an15602k URL |
[30] |
Yan X Y, Gu Y, Li C , et al. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine[J]. Biosensors and Bioelectronics, 2016,77:1032-1038.
doi: 10.1016/j.bios.2015.10.085 URL pmid: 26556183 |
[31] |
Jin H, Zhao C Q, Gui R J , et al. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine[J]. Analytica Chimica Acta, 2018,1025:154-162.
doi: 10.1016/j.aca.2018.03.036 URL pmid: 29801604 |
[32] |
Wang J, Li Y M, Wu S F , et al. Study on the electrochemical properties of Salvianic acid a sodium and its analytical application[J]. Journal of the Chinese Chemical Society, 2012,59(8):947-952.
doi: 10.1002/jccs.201100757 URL |
[33] |
Yang L, Liu D, Huang J S , et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2014,193:166-172.
doi: 10.1016/j.snb.2013.11.104 URL |
[34] |
Li X Y, Lu X J, Kan X W . 3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection[J]. Journal of Electroanalytical Chemistry, 2017,799:451-458.
doi: 10.1016/j.jelechem.2017.06.047 URL |
[35] |
Numan A, Shahid M M, Omar F S , et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051.
doi: 10.1016/j.snb.2016.07.111 URL |
[36] |
Dincer C, Ktaich R, Laubender E , et al. Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection[J]. Electrochimica Acta, 2015,185:101-106.
doi: 10.1016/j.electacta.2015.10.113 URL |
[37] |
Gao F, Cai X L, Wang X , et al. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J]. Sensors and Actuators B: Chemical, 2013,186:380-387.
doi: 10.1016/j.snb.2013.06.020 URL |
[38] | Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕 ). Synjournal of Keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistry( 电化学), 2018,24(5):555-562. |
[1] | 罗大娟, 刘冰倩, 覃蒙颜, 高荣, 苏丽霞, 苏永欢. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J]. 电化学(中英文), 2022, 28(8): 2110191-. |
[2] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[3] | Tesfaye Hailemariam Barkae, Mohamed Ibrahim Halawa, Tadesse Haile Fereja, Shimeles Addisu Kitte, 马显贵, 陈业权, 徐国宝. 鲁米诺/氨基磺酸电化学发光及其多巴胺检测应用[J]. 电化学(中英文), 2021, 27(2): 168-176. |
[4] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[5] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[6] | 王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358. |
[7] | 姚硕, 黄太仲, RizwanHaider, 房恒义, 于洁玫, 姜占坤, 梁栋, 孙玥, 原鲜霞. NiO@rGO负载钯、银纳米粒子用作氧还原催化剂[J]. 电化学(中英文), 2020, 26(2): 270-280. |
[8] | 李明雪, 史 杭, 刘 佳, 张 檬, 周剑章, 吴德印, 田中群. 金电极上偶氮腺嘌呤的电化学行为研究[J]. 电化学(中英文), 2019, 25(6): 651-659. |
[9] | 凌 云, 汤 儆, 刘国坤, 宗 铖. 暂态电化学表面增强拉曼光谱研究对硝基苯硫酚分子的电化学还原过程[J]. 电化学(中英文), 2019, 25(6): 731-739. |
[10] | 酒琳娜, 程永强. 二氧化钛纳米颗粒/还原氧化石墨烯修饰玻碳电极在对硝基苯酚检测中的应用[J]. 电化学(中英文), 2019, 25(4): 504-510. |
[11] | 关利浩, 王 超, 张 望, 蔡雨露, 李 凯, 林雨青. 快捷两步法制备金纳米电极用于活体多巴胺检测[J]. 电化学(中英文), 2019, 25(2): 244-251. |
[12] | 戴琬琳, 鲁志伟, 叶建山. 二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定[J]. 电化学(中英文), 2019, 25(2): 260-269. |
[13] | 颜冲, 寇华日, 颜波, 刘晓静, 李德军, 李喜飞. Ni/Mn3O4/NiMn2O4@RGO空心微球负极的制备及其储钠性能[J]. 电化学(中英文), 2019, 25(1): 112-121. |
[14] | 张雅琳,陈驰,邹亮亮,邹志青,杨辉. Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学(中英文), 2018, 24(6): 726-732. |
[15] | 董鹏飞, 李娜, 赵海燕, 崔敏, 张聪, 任聚杰, 藉雪平. Keggin 型磷钨酸盐修饰碳糊电极传感多巴胺的研究[J]. 电化学(中英文), 2018, 24(5): 555-562. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||