[1] |
Majid E, Hrapovic S, Liu Y, et al.Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis[J]. Analytical Chemistry, 2006, 78(3): 762-769.
URL
pmid: 16448049
|
[2] |
Wang J(王晶). Development and application of a novel ion-imprinted electrochemical sensor[D]. Jishou University(吉首大学), 2017.
|
[3] |
Mandal B K, Suzuki K T.Arsenic round the world: a review[J]. Talanta, 2002, 58(1): 230-235.
|
[4] |
Salimi A, Marnkhezri H, Halla R, et al.Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles[J]. Sensors & Actuators B - Chemical, 2008, 129(1): 246-254.
|
[5] |
Chakraborti D, Rahman M M, Paul K, et al.Arsenic calamity in the Indian subcontinent: What lessons have been learned[J]. Talanta, 2002, 58(1): 13-22.
|
[6] |
Yang M, Chen X, Liu J H, et al.Enhanced anti-interference on electrochemical detection of arsenite with nanoporous gold in mild condition[J]. Sensors and Actuators B - Chemical, 2016, 234: 404-411.
|
[7] |
Welna M, Szymczycha-Madeja A, Pohl P.Improvement of determination of trace amounts of arsenic and selenium in slim coffee products by HG-ICP-OES[J]. Food Analytical Methods, 2014, 7(5): 1016-1023.
|
[8] |
Male K B, Sabahudin H, Santini J M, et al.Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes[J]. Analytical Chemistry, 2007, 79(20): 7831-7837.
|
[9] |
Pereira F J, Vázquez M D, Deb$\acute{a}$n L, et al.Spectrometric characterisation of the solid complexes formed in the interaction of cysteine with As(III), Th(IV) and Zr(IV)[J]. Polyhedron, 2014, 76(8): 71-80.
|
[10] |
Ni Z, Na F, Fang Z T, et al.Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves[J]. Food Chemistry, 2011, 124(3): 1185-1188.
|
[11] |
Yang M, Chen X, Jiang T J, et al.Electrochemical detection of trace arsenic(iii) by nanocomposite of nanorod like α-MnO2 decorated with ~5 nm Au nanoparticles: Considering the change of arsenic speciation[J]. Analytical Chemistry, 2016, 88(19): 9720-9728.
|
[12] |
Wang D Y, Wang J, Zhang J J, et al.Novel electrochemical sensing platform based on integration of molecularly imprinted polymer with Au@Ag hollow nanoshell for determination of resveratrol[J]. Talanta, 2019, 196: 479-485.
|
[13] |
Song Z(宋卓), Feng L(冯流), Zhang T Y(张添俞). Preparation and performance evaluation of arsenic ion imprinted polymer[J]. Techniques and Equipment for Environmental Protection, 2014, 5: 2141-2145.
|
[14] |
Li Y C, Liu J, Liu M H, et al. Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam[J]. Electrochemistry Communications, 2016, 64: 42-45.
|
[15] |
Xu L J(徐丽娟), Li J S(李锦书), Lu X Q(卢小泉), et al.Development and application of molecularly imprinted copper ion voltammetry sensor[J]. Chemical Research and Application(化学研究与应用), 2013, 25(10): 1351-1356.
|
[16] |
Li Y C, Song H, Zhang L, et al.Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level[J]. Biosensors and Bioelectronics, 2016, 78: 308-314.
URL
pmid: 26630285
|
[17] |
Li Y C, Liu Y, Yang Y, et al.Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15474-15480.
URL
pmid: 26126643
|
[18] |
Zhang J J, Liu J, Zhang Y, et al.Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer[J]. Microchimica Acta, 2018, 185(1): 78.
URL
pmid: 29594562
|
[19] |
Chen C F, Wang Y Z, Ding S H, et al.A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine[J]. Microchemical Journal, 2019: 191-197.
|
[20] |
Bala A, Pietrzak M, Zajda J, et al.Further studies on application of Al(III)-tetraazaporphine in membrane-based electrochemical sensors for determination of fluoride[J]. Sensors & Actuators B - Chemical, 2015, 207: 1004-1009.
|
[21] |
Wang M L, Gao Y Q, Sun Q, et al.Ultrasensitive and simultaneous determination of the isomers of Amaranth and Ponceau 4R in foods based on new carbon nanotube/polypyrrole composites[J]. Food chemistry, 2015, 172: 873-879.
|
[22] |
Cui G L, Zhang M Z, Zou G T.Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application[J]. Scientific Reports, 2013, 3: 1250.
URL
pmid: 23409241
|
[23] |
Jiang D L, Zhang Y, Chu H Y, et al.N-doped graphene quantum dots as an effective photocatalyst for the photochemical synjournal of silver deposited porous graphitic C3N4 nanocomposites for nonenzymatic electrochemical H2O2 sensing[J]. RSC Advances, 2014, 4(31): 16163-16171.
|
[24] |
Ananthi A, Kumar S S, Phani K L.Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid[J]. Ele-ctrochimica Acta, 2015, 151(5): 584-590.
|
[25] |
Wang J P, Hua G, Sun F L, et al.Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide[J]. Sensors & Actuators B Chemical, 2014, 191(2): 612-618.
|
[26] |
Fan H X, Guo Z K, Gao L, et al.Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline-Au asymmetric multicomponent nanoparticles[J]. Biosensors & Bioelectronics, 2015, 64: 51-56.
URL
pmid: 25194795
|
[27] |
Chang J K, Wu C M, Sun I W.Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications[J]. Journal of Materials Chemistry, 2010, 20(18): 3729-3735.
|
[28] |
Lu W B, Qin X Y, Asiri A M, et al.Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection[J]. Analyst, 2013, 138(2): 417-420.
doi: 10.1039/c2an36138h
URL
pmid: 23162811
|
[29] |
Yang J, Hu Y, Li Y C.Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection[J]. Biosensors and Bioelectronics, 2019, 135: 224-230.
|
[30] |
Li Y C, Liu Y, Liu J, et al.Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors[J]. Scientific Reports, 2015, 5(1): 7699-7699.
|
[31] |
Lu Jie(刘杰). Preparation of new nano-materials and their applications in electrochemical sensors[D]. Shihezi University(石河子大学), 2017.
|
[32] |
Liu Y(刘媛). Preparation of several nano-composite materials and their applications in the field of sensor[D]. Shihezi University(石河子大学), 2015.
|
[33] |
Yu F(余芬), Lai G Y(赖广运), Li R(李锐), et al.Atomic fluorescence spectrometric determination of arsenic in water treatment agents[J]. Chemical Management(化工管理), 2017, 6: 178.
|