[1] |
Fujishima A, Honda K . TiO2 photoelectrochemistry and photocatalysis[J]. Nature, 1972,238(5358):37-38.
|
[2] |
Ma Y, Wang X, Jia Y S , et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014,114(19):9987-10043.
URL
pmid: 25098384
|
[3] |
Ge M, Cao C, Huang J Y , et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal of Materials Chemistry A, 2016,4(18):6772-6801.
|
[4] |
Wang X, Li Z D, Shi J , et al. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts[J]. Chemical Reviews, 2014,114(19):9346-9384.
|
[5] |
Dhakshinamoorthy A, Navalon S, Corma A , et al. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids[J]. Energy & Environmental Science, 2012,5(11):9217-9233.
|
[6] |
Liu Q H, He J F, Yao T , et al. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation[J]. Nature Communications, 2014,5:5122.
|
[7] |
Park H A, Liu S, Oh Y , et al. Nano-photoelectrochemical cell arrays with spatially isolated oxidation and reduction channels[J]. ACS Nano, 2017,11(2):2150-2159.
|
[8] |
Wei Y Q, Li L Q, Fang W H , et al. Weak donor-acceptor interaction and interface polarization define photoexcitation dynamics in the MoS2/TiO2 composite: Time-domain Ab initio simulation[J]. Nano Letters, 2017,17(7):4038-4046.
|
[9] |
Wang M, Ioccozia J, Sun L , et al. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis[J]. Energy & Environmental Science, 2014,7(7):2182-2202.
|
[10] |
Long R, English N J, Prezhdo O V . Minimizing Electronhole recombination on TiO2 sensitized with PbSe quantum dots: Time-domain Ab initio analysis[J]. Journal of Physical Chemistry Letters, 2014,5(17):2941-2946.
|
[11] |
Low J, Yu J, Jaroniec M , et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017,29(20):1601694.
|
[12] |
Guo Q, Zhou C Y, Ma Z B , et al. Elementary photocatalytic chemistry on TiO2 surfaces[J]. Chemical Society Reviews, 2016,45(13):3701-3730.
URL
pmid: 26335268
|
[13] |
Zheng L X, Han S C, Liu H , et al. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances[J]. Small, 2016,12(11):1527-1536.
|
[14] |
Zhang X F, Zhang B Y, Huang D K , et al. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting[J]. Carbon, 2014,80:591-598.
|
[15] |
Ge M Z, Li S H, Huang J Y , et al. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application[J]. Journal of Materials Chemistry A, 2015,3(7):3491-3499.
|
[16] |
Li F, Zhang L, Tong J C , et al. Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor[J]. Nano Energy, 2016,27:320-329.
|
[17] |
Lai Y, Sun L, Chen Y , et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity[J]. Journal of The Electrochemical Society, 2006,153(7):D123-D127.
|
[18] |
Vogel D J, Kilin D S . First-principles treatment of photoluminescence in semiconductors[J]. The Journal of Physical Chemistry C, 2015,119(50):27954-27964.
|
[19] |
Yeh T F, Chan F F, Hsieh C T , et al. Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide[J]. The Journal of Physical Phemistry C, 2011,115(45):22587-22597.
|
[20] |
Huang Y, Gao Y, Zhang Q , et al. Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NOx removal under visible light: Improved charge separation and high selectivity[J]. Journal of Hazardous Materials, 2018,354:54-62.
|